Battery charger apparatus

Electricity: battery or capacitor charging or discharging – Battery or cell charging – Multi-rate charging

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C320S137000

Reexamination Certificate

active

06353306

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a “smart” voltage regulator for regulating the voltage of an alternator which, in turn, provides a charging current to a storage battery for improving battery performance by maintaining a proper level of charge, and by reducing sulfation on the surface of the plates.
By way of background, motor vehicles in the United States some years ago typically had six-volt systems comprising, in part, a battery, a direct current (DC) generator, a DC starting motor or starter which, when energized, would start an internal combustion engine which, in turn, would drive the DC generator. A voltage regulator connected to the DC generator would control the output DC voltage thereof.
More recently, most motor vehicles in the United States use twelve-volt systems comprising a twelve-volt battery (12 volt being a nominal output voltage thereof), an alternating current (AC) alternator with appropriate rectifying means for providing a DC current, a DC starter, and a voltage regulator for controlling the voltage output of the alternator. Twelve volt systems are described here as a reference. The present invention works equally well on any voltage system. The regulation set points are adjusted accordingly.
There are a number of uses or scenarios for the above described 12-volt system, all of which are based on the internal combustion engine and lead-acid battery combination. One use is with “over-the-road” trucks wherein the engines are operated more or less continuously for long periods of time, and thus, few start-up operations requiring battery current for starting are experienced. A large percentage of “passenger” vehicles make fairly frequent starts (one or more per day) with sufficient run time between each start so as to keep the battery charged. On the other hand, there are a number of applications such as recreational boats, recreational vehicles, antique and other cars wherein such vehicles are operated only occasionally, raising the likelihood of the storage battery used for starting the engine being significantly discharged throughout extended intervals during its life.
Another challenging application for a storage battery is in connection with vehicles that make long stops with loads left on, coupled with very little “run time”. For example, delivery vehicles serving a high-density business section of a metropolitan area typically make long stops with “flashers” left on, coupled with very little run time between stops. The result is storage batteries that are consistently undercharged, shortening the life of the batteries.
The present invention actively monitors the needs of the above uses and changes the storage battery charging profile accordingly.
DISCUSSION OF THE PRIOR ART
There are, of course, numerous prior art voltage regulator systems for regulating the output voltage of the generator or alternator. Roseman, et al., U.S. Pat. No. 5,623,197 is an example of a prior art system which teaches the decreasing of the output voltage of the alternator when the battery is significantly discharged, to prevent excessive current from entering the battery. Roseman's application concentrates on nickel-cadmium and sealed lead-acid aviation batteries charged by an aviation electrical generator/starter. The present invention concentrates on lead-acid batteries with very different needs.
Current industry technology emphasizes the constant potential method. This method has its disadvantages. It is difficult to have one optimal voltage setting for all conditions. If the voltage setting is too high, overcharging occurs causing electrolysis (water use) and reduced battery life. If, however, the voltage is set too low, the battery remains undercharged for extended periods causing sulfation and reduced battery life.
U.S. Pat. No. 5,703,476 suggests that basing the voltage setting on double slope temperature compensation charges the battery better. Temperature, however, is only one factor in the battery's charging needs. Furthermore, battery temperature and regulator temperature are not often correlated. The physical placement of the battery is often different than the voltage regulator, resulting in poor temperature correlation.
The majority of voltage regulator prior art ignores the health of the battery, the primary role of the charging system. Tsuchiya, et al., U.S. Pat. No. 5,929,613 and Peter, et al., U.S. Pat. No. 5,773,964 are examples of this.
SUMMARY OF THE INVENTION
In broad terms, the present invention provides a voltage regulator which is capable of monitoring battery voltage, alternator voltage, voltage regulator temperature, battery temperature, and time. The regulator adjusts the charging profile based on the history of the foregoing five parameters. These parameters have varying importance depending upon the mode of the vehicle.
The primary purpose of the battery in vehicles is to start the engine. Discharged and failing batteries will have longer starts and lower minimum starting voltages. Therefore, it is wise to closely monitor and record voltage and time during starts. Minimum battery voltage during start, length of start, and the integral of delta voltage versus time may all be recorded by the present invention and used to adjust charging profile. After the engine is started, the present invention charges the battery back as fast as possible without, however, damaging the battery or alternator. The regulator sets its first threshold (Tier I) between 15 and 16 volts. It then records how long it takes to get to the Tier I threshold. This value (time) is used later to adjust the charging profile. Fully charged batteries take seconds to get to the Tier I threshold, while discharged batteries could take tens of minutes. The present invention lowers the system voltage before the risk of overcharging and damage occurs, thus achieving the goal of reaching Tier I threshold by charging the battery as rapidly as possible without overcharging. This feature also helps to break up sulfation on the battery's plates.
The present invention controller keeps the battery at the first threshold for a software determined length of time depending upon battery state of charge (from multiple seconds to minutes).
The smart regulator will then regulate the battery's voltage to a second threshold (Tier II). Tier II is in the voltage range of normal voltage regulators (14-15 volts). The regulator keeps the battery at Tier II for a period to ensure that the battery is fully charged, following which the controller tapers back the battery's voltage to a final threshold, or safe-float voltage. This increases fuel economy, battery life, alternator life, and halogen light life. The float voltage is in the range of 13.5 to 14.2 volts, which is the range similar to over-the-road trucks that spend the vast majority of their time running, and not starting.
Application of the present invention may include more than the described above thresholds (Tier I, Tier II, Tier III, etc.). Some of which may only be used when the controller deems it necessary based on the history of the system. Vehicles that have not run for an extended period are good examples of this. The controller may deem it necessary to add an extra high voltage phase (14.5 to 15.5 volts), in order to break up sulfation on the storage battery's plates and ensure the storage battery is fully charged. This change in charge profile increases the life of storage batteries for recreational boats, recreational vehicles, and other infrequently driven vehicles.
Batteries that have an abnormally low open circuit voltage are another example of where the controller may need to add an extra or extended high voltage phase (14.5 to 15.5 volts). Leaving headlights or electrical accessories on while the vehicle is not running induces this situation. Present vehicle charging systems are designed to keep storage batteries charged during normal use. They are not designed to fully recharge the storage battery. Often this results in storage batteries spending extended periods significantly d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Battery charger apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Battery charger apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery charger apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2877604

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.