Battery charger and method of charging nickel based batteries

Electricity: battery or capacitor charging or discharging – Diverse charging or discharging rates for plural batteries

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C320S151000, C320S153000, C320S161000, C320S162000

Reexamination Certificate

active

06313605

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a battery charger and a method of charging a rechargeable battery specifically Ni—Cd (Nickel-Cadmium), and Ni—MeH (Nickel-Metal Hydride) batteries which utilize predetermined indicia as a signal to terminate charging.
2. Background and Description of the Related Art
Portable electronic devices, e.g. cellular phones, two-way radios, laptop computers and camcorders are in widespread use. Portable electronic devices have also become more common in the aerospace industry. It has become necessary with the growing use of these devices to provide a rechargeable battery that is in a continuous state of operational readiness. In this regard, it is preferable to utilize a rechargeable battery that uses a method of recharging that avoids both under- and overcharging.
Overcharge conditions are undesirable and disadvantageous to the life cycle of the battery. Overcharge reactions in vented cells result in electrolysis and loss of water that must be replaced; in sealed cells, overcharge reactions create pressure and heat since the recombination reactions of gases produced during overcharge are exothermic.
Overcharge reactions that result from high charging voltage may be prevented by simply limiting the charging voltage to a certain value. This simple approach is, unfortunately, only partially successful with cell types, e.g., lead-acid cells, vented Nickel-Cadmium cells, and sealed lithium ion cells.
Despite the adverse consequences of overcharging, in conventional charging methods, overcharge reactions are tolerated to complete the charging process. Sealed cells capable of recombining the overcharge reaction products are able to tolerate overcharge at low rates because the pressures of by-product gases are low and the heat generation is slow enough that the generated heat can be easily dissipated and lost. However, continuous overcharge, even at low rates, reduces the life cycle of the cells.
Rapid charging, i.e., charging in less than one hour, presents much more of a challenge in both vented and sealed cells. The first problem results from the limited rate of charge distribution or equilibration within the electrode plates. Also, at higher charge rates, the overcharge reactions begin to appear at a lower fraction of full charge. When overcharge reactions spear, the efficiency of the charge reactions declines and much of the columbic energy is wasted on the overcharge reactions. The rapid heating of a battery during high-rate overcharge may cause safe pressure limits to be exceeded, as well as cell venting.
There are many different methods for the charging of Ni—MeH and Ni—Cd sealed batteries. Most of these methods use voltage and temperature as parameters for charging termination. The typical voltage termination methods are peak-voltage detection (PVD) or −&Dgr;V/&Dgr;t. If the battery is charged with varying current, then temperature termination can be used. The PVD method is usable based on the idea of increasing the over voltage of oxygen production on the positive electrode. As soon as this over voltage rises the battery voltage also rises, and the peak voltage is indicated at the onset of oxygen production. Use of PVD as the primary termination method has some undesirable characteristics associated mainly with battery temperature. The oxygen over voltage value is in inverse proportion with temperature and sometimes the peak voltage can be missed. The −V/&Dgr;t method is not effective for nickel-metal hydride chemistry because there is no significant drop in the chemical polarization value with temperature, but it is a commonly used method for charging termination of Ni—Cd batteries.
The temperature termination methods that can be used are maximum battery temperate, difference between ambient temperate and the battery's temperate (&Dgr;T), or a predetermined value of the first order differential with temperature to time (&Dgr;V/&Dgr;t). These methods are well known in the art and are based on the phenomena associated with heat production in the process of oxygen consumption on the negative electrode. This method, like any temperature method of charge termination, suffers from inertia. The inertia in termination results in a high final temperature, and the high temperature causes an increase in hydrogen pressure under meal-hydride alloy. As soon as the hydrogen pressure (or mixture of hydrogen oxygen pressure) exceeds the valve release maximum pressure, gas escapes from the bay. The loss of hydrogen-oxygen gas mixes (per one Faraday) equal to the water loss. This is a typical mechanism of electrolyte decomposition in a metal-hydride battery. The electrolyte decomposition causes the battery impedance to rise and therefore the capacity of the battery drops.
U.S. Pat. No. 5,352,967, which is hereby incorporated herein by reference in its entirety, provides a good summary of some of the known methods of charging storage batteries. Most methods of charging sealed NiCad and Ni—MeH batteries use voltage and temperatures as parameters for terminating charging phase. The methods disclosed therein focus on various techniques of determining proper charge termination and include: constant current mode; delta temperature/delta time mode (dT/dt); negative delta voltage charge mode (−&Dgr;V); positive delta voltage or delta voltage/delta time mode (dV/dt); pulse charge mode; and reflex mode.
In the constant current charge mode, the battery is continuously overcharged with a low current. Although the expenditure for a constant current source is relatively low, the long charging time causes damage to the cell. In the constant charge mode, it is customary to restrict the charging time. Therefore, as soon as a selected time has elapsed the charging operation is terminated. Accordingly, since the constant current charge mode does not take into account the charge condition or chemical makeup of the cell, under- or overcharging of the cell can result.
In delta temperature/delta time charging (dT/dt), the charging current is switched off once the cell has reached a predetermined slope in the temperature versus time curve for the cell. This method can generate incorrect termination signals. The charging process may be terminated prior to the battery being fully charged if the preset value of dT/dt is too low, or, conversely, the charging process may be terminated too late if the preset due of dT/dt is too large.
In the negative delta voltage charge mode, a negative slope in the charge curve (dV/dt<0), which appears after complete charging of the battery, is used to terminate charging. The batteries are charged from a constant current source, and the charging voltage rises steadily for as long as the cells are capable of converting the supplied energy into chemical energy. When the cells are no longer capable of storing the supplied energy, the supplied energy is converted into heat, and the cell voltage drops. The drop in the cell voltage is used as an indicator to terminate charge. However, fluctuations in the battery voltage caused by surface effects may be erroneously interpreted as a signal to terminate charge. Therefore, premature break-off of the charging operation is often seen when utilizing the negative delta voltage charge mode. Another problem with negative delta voltage charge mode is that with low rates of charge, the battery does not experience a negative delta voltage in the end of charge. Additionally, Nickel-Metal Hydride batteries do not have the pronounced charging voltage curves seen in Ni—Cd batteries, and as a result, are often overcharged using the negative delta voltage charge mode.
In the positive delta voltage or delta voltage/delta tie mode (dV/dt), the slope of the voltage charging curve is evaluated to determine when to terminate charging of the battery. Theoretically, the rise in the charging voltage decreases when the battery is near full charge. Utilizing a mathematical differential of the charge curve, the reduction in this rise in the charging voltage can be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Battery charger and method of charging nickel based batteries does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Battery charger and method of charging nickel based batteries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery charger and method of charging nickel based batteries will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2612703

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.