Battery charge optimizing system

Electricity: battery or capacitor charging or discharging – Diverse charging or discharging rates for plural batteries

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06188199

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to batteries connected to direct current (DC) buses and, more specifically, to a charge optimizer interposed between the battery and the bus.
BACKGROUND OF THE INVENTION
In some applications, such as aircraft applications, batteries are used as a power source for engine starting or as an emergency power source for a DC bus. Obviously, it is important to maintain the battery in a fully charged condition and to charge it after use. In known systems, a DC bus to which the battery is connected may itself be powered by a DC source, such as an engine-driven AC generator and a transformer rectifier unit (TRU) to convert AC to DC. During normal operation, the DC power source provides power for electrical loads of the system, in addition to providing power for charging the battery. If the DC power is interrupted, the battery immediately provides power to the DC bus. In order to reduce the voltage variation on the DC bus, the battery nominal voltage is usually selected to be close to the DC bus voltage.
The battery system with these components is simple and low cost so it is widely used in aircraft, electrical vehicle, and telecommunications applications. However, in this configuration, the battery is maintained in a float mode where the battery is fully charged and is essentially being topped off continuously because the DC power feeding the bus almost always is available. Therefore, the battery may be overcharged for long periods of time, resulting in battery overheating and electrolyte loss. On the other hand, if the bus voltage is too low the battery could be undercharged, resulting in capacity fade. In both cases this results in reducing system reliability, as well as increasing battery system maintenance cost. In addition, it may be undesirable to keep a completely discharged battery floating on the bus because the battery may draw a large transient current during initial charging and overloading the DC source.
One approach to these problems is to regulate the DC bus voltage in a way that is better for charging the battery. For example, the DC bus voltage may be initially reduced following battery discharge to prevent large current in-rush transients. The voltage may then be raised above a normal charging level to increase the battery charging rate. Such systems provide better control over battery charging to prevent overheating of the battery, and allow the battery to be recharged more quickly. However, there is substantial increased cost and complexity in regulating the DC bus voltage, and other aircraft systems connected to the bus may be affected.
More often, the DC bus is powered with an unregulated source, such as a TRU. In these systems, attempts have been made to intermittently connect the battery to the bus, as described, for example, in U.S. Pat. No. 3,703,675, which uses a contactor to control the battery charge and a parallel diode to provide a discharge path, and U.S. Pat. No. 5,969,436, which uses a MOSFET in series with a diode in order to control battery discharging. Another approach has been to add a “boost” circuit in series with an intermittently charged battery, to provide a voltage higher than the DC bus voltage for battery charging. See, for example, U.S. Pat. No. 4,061,956. Also, U.S. Pat. No. 4,443,752 describes a similar technique using a MOSFET as a switch. In either of these systems, two series-connected power components are provided on the high current path between the DC bus and the battery, which may increase power dissipation during operation.
SUMMARY OF THE INVENTION
The present invention provides a high efficiency system for battery charging off a DC bus, at low cost and adaptable to changing conditions of the battery. In the preferred embodiment, two converters in parallel are used, one that can lower the battery voltage below the bus voltage or directly connect the bus to the battery and one that can raise the voltage to the battery above the bus voltage. The preferred system also optimizes battery charging by maintaining battery capacity, reduces water loss, and allows increased maintenance intervals.
The first converter operates bi-directionally. It can perform as a simple contactor or as a voltage regulator with current limit. The primary function of this converter is to provide a path for battery “bulk” charge, i.e., the major portion of the charging, or for the battery to hold the bus voltage when the usual DC source is interrupted.
The second converter, in parallel with the first converter, provides an elevated voltage for battery topping and trickle charging. Since the current for these charges is small, the second converter is designed only to handle low power operation. This reduces the cost and improves the efficiency, while achieving the optimal control of battery charging.
In the preferred embodiment, a battery charge optimizer (BCO) in accordance with the present invention has two buck converters, one operating from a voltage higher than the DC bus.
The system in accordance with the present invention operates in three modes. For a discharged battery, the charge starts at a current limited “bulk mode” in which the charging current is controlled. When a desired charging state is reached, detected by the decreasing charging current, a “topping mode” is used where a predetermined current level is maintained but the battery voltage is free to rise. When the rising voltage reaches a temperature compensated set point, the charge is transacted to a second stage of topping mode where the voltage is maintained for a relatively short period. Thereafter, a third mode, “trickle mode” or “balance mode”, is effected in which the charging current is maintained at a small value.
In a representative aircraft application, the BCO in accordance with the present invention is interposed between the DC bus and the battery, but the battery still can be directly connected to a potential load, such as the starter of an auxiliary power unit (APU).


REFERENCES:
patent: 3703675 (1972-11-01), Alric et al.
patent: 4061956 (1977-12-01), Brown et al.
patent: 4146830 (1979-03-01), Foster
patent: 4380725 (1983-04-01), Sherman
patent: 4443752 (1984-04-01), Newman
patent: 4536696 (1985-08-01), Ray
patent: 4649333 (1987-03-01), Moore
patent: 5250891 (1993-10-01), Glasgow
patent: 5623197 (1997-04-01), Roseman et al.
patent: 5864221 (1999-01-01), Downs et al.
patent: 5969436 (1999-10-01), Chalasani et al.
Reid, D.P. and Glasa, I., “A New Concept: Intermittent Charging of Lead Acid Batteries in Telecommunication Systems,” International Telecommunications Energy Conference, Nov. 1984, pp. 67-71.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Battery charge optimizing system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Battery charge optimizing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery charge optimizing system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2574968

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.