Battery cell charging system having voltage threshold and...

Electricity: battery or capacitor charging or discharging – Serially connected batteries or cells – With discharge of cells or batteries

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06285161

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a balanced battery cell charging circuit. More particularly, the present invention relates to a battery charging circuit that monitors the voltage of each cell within the battery, and supplies a charging current depending on the cell voltage. Particular utility of the present invention is a battery charging circuit for portable electronic devices; although the present invention has utility in any system that uses rechargeable batteries.
2. Description of Related Art
Various charger circuits and techniques for charging and recharging secondary cells are known. In one such technique, the cell voltage is monitored and a charge current supplied to the cell is reduced as the cell voltage increases. This technique is based on a recognition that, as the voltage across the cell increases, its charge acceptance decreases. Other battery charging techniques utilize circuitry for sensing the charge accepted by the cell and reducing the charge current supplied to the cell as the accepted charge decreases. In still another battery charging technique, a constant current is supplied to the cell during a first charging interval and a constant voltage is provided to the cell during a second charging interval. The first and second intervals may have predetermined durations or alternatively, may be a function of a battery condition, such as the cell voltage.
As is apparent, many battery charging techniques require measurement of the voltage across the rechargeable cell. Another reason for measuring the cell voltage is to prevent cell damage due to an overvoltage or undervoltage condition. More particularly, certain types of nonaqueous electrolyte battery cells, such as lithium ion cells, are susceptible to damage if charged to too high a voltage or permitted to be discharged to too low a voltage.
Secondary cells are often connected in series to power a load, since the total voltage across the string of series-connected cells is approximately equal to the sum of the voltages across each individual cell. One way to measure the individual cell voltages in a string of series-connected cells is to measure the total voltage across the string of cells and divide the measured voltage by the number of cells. However, this technique provides only a rough approximation of the individual cell voltage since typically, the voltage across each cell varies somewhat.
Another technique for measuring the voltage across individual series-connected cells is to provide a sensing circuit for each such cell and average the outputs of the sensing circuits. For example, a plurality of differential amplifiers may be provided, with input terminals of each amplifier coupled across a respective cell and the output signals of the amplifiers averaged. However, since such a measurement is of the average cell voltage, when using the measurement to control cell charging, some cells will be overcharged and others will be undercharged in accordance with the deviation between their respective voltage and the average measured voltage. Moreover, use of plural sensing circuits results in disadvantageous component duplication and concomitant increases in manufacturing time and cost.
One attempt to solve these attendant problems can be found in U.S. Pat. No, 5,652,501. This patent discloses battery charger/monitor circuit for charging and/or monitoring a plurality of series-connected cells. The disclosed circuit includes a voltage sensor for sensing the voltage across each of the cells to provide a high cell voltage signal proportional to the highest voltage across any of the cells and a low cell voltage signal proportional to the lowest voltage across any of the cells. The circuit is operable in a monitor mode or a charge mode. In the monitor mode, the cells are disconnected from a load if the low cell voltage signal decreases to a first predetermined level. The circuit also includes a controller that provides a control signal in response to the high cell voltage signal, the low cell voltage signal and a current sense signal, for controlling the charging of the cells. In the charge mode, the cells receive a constant charge current until the high cell voltage signal reaches a second predetermined level, after which the voltage across the cell charged to the highest voltage is held substantially constant, causing the charge current to be reduced.
While this alleviates some of the attendant problems associated with the prior art, this attempt does not provide a circuit that considers power dissipation criteria. For IC implementation, there is often a limit as to the maximum power that the IC is permitted to dissipate. Also, for portable device applications, it is necessary to be very power conscious, for obvious reasons. In the aforementioned patent, the disclosed topology reduces the cell voltage once a predetermined threshold is met. However, this cannot accurately monitor power dissipation considerations, nor can charging current be adjusted at a battery cell level.
SUMMARY OF THE INVENTION
Accordingly, the present invention solves the aforementioned drawbacks of the prior art by providing a battery charging circuit that monitors the voltage of each cell within the battery, and supplies a charging current depending on the cell voltage. Unlike the aforementioned prior art references, the present invention controls the battery the current supplied to each battery cell, based on a cell voltage tolerance. Based on the cell voltage parameters, a bleeder current is generated which is subtracted from the charging current, thereby reducing the total charging current delivered to the cell. Additionally, the present invention provides a circuit that minimizes power dissipation by generating a minimal bleeder current, multiplying the bleeder current, and bleeding the multiplied bleeder current from the cell.
In one embodiment, the present invention provides a battery cell charging circuit that includes a charger circuit supplying a charging current to said battery cell. A comparator is used for comparing a battery cell voltage to a predetermined threshold cell voltage. The comparator controls the generation of a bleeder current proportional to the amount the battery cell voltage exceeds the predetermined threshold. The bleeder is subtracted from the charging current supplied to the battery cell.
In method form, the present invention provides method for charging a battery, including the steps of supplying a charging current to a battery cell; comparing the battery cell voltage to a predetermined threshold cell voltage; generating a bleeder current if the cell voltage exceeds said predetermined threshold cell voltage; and subtracting the bleeder current from the charging current.
In another preferred embodiment, the present invention provides a battery cell charging circuit that comprises a battery including a plurality of cells. A charger circuit supplies a charging current to each cell. A first comparator compares a battery cell voltage to a predetermined threshold cell voltage, the comparator also controls the generating a bleeder current proportional to the amount the battery cell voltage exceeds the predetermined threshold. A current mirror generates the bleeder current and a multiple of the bleeder current, the multiple of the bleeder is subtracted from the charging current supplied to the battery cell. A second comparator is provided for comparing the bleeder current to a maximum allowable bleeder current value, and generating a feedback signal to the charger circuit to control the value of the charging current.
It will be appreciated by those skilled in the art that although the following Detailed Description will proceed with reference being made to preferred embodiments and methods of use, the present invention is not intended to be limited to these preferred embodiments and methods of use. Rather, the present invention is of broad scope and is intended to be limited as only set forth in the accompanying claims.
Other features and advantages of the prese

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Battery cell charging system having voltage threshold and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Battery cell charging system having voltage threshold and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery cell charging system having voltage threshold and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2529109

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.