Battery, based power supply device and associated...

Electricity: battery or capacitor charging or discharging – Cell or battery charger structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06794849

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a maintenance service system for a battery and a power source device where an electronic device provided with a connection function for connecting with a communication network operates as a client device, and a service handling server set up on the communication network in correspondence with the client device maintains a battery or a power source device connected with the client device through the communication network.
BACKGROUND ART
A battery power source device applied to a portable personal computer (a portable PC, hereafter) and the like is generally constituted as a smart battery system which is provided with a rechargeable battery and a battery monitor function for monitoring the battery voltage, the battery temperature, the remaining capacity, and the like in addition to a battery protection function for protecting the rechargeable battery from an over charge and an over discharge, and is connected with a PC main unit with communication means typified by SMBus (System Management Bus). The PC main unit uses this smart battery system to always monitor the operation state of the battery power source device, and enhances a power management system which conducts power save control, and prevents data crash caused by an unexpected power drop from occurring.
The portable PC is constituted such that it can also operates on an AC power source. The AC power source is also necessary for charging the rechargeable battery, and power source monitoring means provided for the PC main unit comprehensively monitors the battery power source and the AC power source, and comprehensively controls switching between the battery power source and the AC power source, and charging the rechargeable battery.
While data such as the remaining capacity of the rechargeable battery can be obtained from the portable PC, it is difficult for a user to determine the state of the battery power source device based on the data. For example, while degradation of the rechargeable battery progresses as charging and discharging is repeated, and the lifetime consequently expires, it is not easy for the user to properly detect a state leading to the life expiration, and to replace the battery before the operation stops. As the rechargeable battery gets degraded, the device may become inoperable to the contrary of the user's expectation. A maintenance service system which determines a failure state of the battery power source device, and the battery monitor function for monitoring the charging and discharging states of the battery power source device is expected.
When an electric power interruption or an accident causes a power source trouble, risk of the data crash on a computer network increases as the size of the computer system increases. An uninterruptible power supply is used to prevent the data crash caused by the power source trouble. Uninterruptible power supplies individually connected with a personal computer are widely used as well as those used in the computer networks. The uninterruptible power supply is constituted using a rechargeable battery, and the rechargeable battery is charged using an AC power source. When the AC power source is interrupted by a power failure, a DC power of the rechargeable battery is transformed into an AC power for supplying for a computer to prevent a data crash caused by an interruption of the AC power source.
A handset of a cordless telephone operates on a rechargeable battery, and is constituted for a phone call while freely moving around. The handset is placed on a battery charger when it is not used in a standby time, and the rechargeable battery is charged in this period.
Though the rechargeable batteries for the uninterruptible power supply and the handset of the cordless telephone are used repeatedly after charging, the degradation progresses as the rechargeable batteries are repeatedly charged and discharged, and the rechargeable batteries consequently reach the life expiration. Though it is necessary to properly detect the state leading to the life expiration, and to replace the battery before it becomes inoperable, it is not easy for a user to determine the life expiration of the rechargeable battery. The period to the life expiration of the rechargeable battery varies according to the usage and the application environment in addition to repeated charging and discharging. Thus, a system for determining the degraded state of the rechargeable batteries of the uninterruptible power supply and the handset of the cordless telephone, and prompting a user to replace them has been expected. Especially, because the uninterruptible power supply secures a power source in case of emergency, and is not used in a normal state, it is necessary to monitor the degraded state of the rechargeable battery to avoid that the uninterruptible power supply has become inoperable.
Also, the rechargeable batteries are not widely available for purchase as dry batteries, and the replacement of them is not easy. It is necessary to replace with rechargeable batteries dedicated to the individual models of the uninterruptible power supply and the handset of the cordless telephone. It takes some time to receive the rechargeable batteries after ordering at a service center of the maker or a retailer in many cases. In this period, the user cannot use the device.
Electric vehicles which travel using rechargeable batteries as a power source, or hybrid vehicles which use both an engine and a motor are practically used, and it is considered that the share of these electric-powered vehicles as low emission vehicles among the entire vehicles will increase. Because an abnormality of the rechargeable battery on an electric-powered vehicle leads to inoperability of the vehicle, the charging and discharging state of the rechargeable battery is monitored. Though the rechargeable battery continues degrading due to repeated charging and discharging, and consequently reaches the life expiration, it is not easy to properly detect the state leading to the life expiration, and to replace the battery before the vehicle cannot travel.
The number of devices such as cellular phones, portable computers, portable audio devices, video cameras, and digital cameras which uses batteries as a power source for operation is increasing, and electronic control and electric operation for the portable devices have so progressed as even cameras for silver salt films which used to operate mechanically do not operate without a battery. In addition to these portable devices, batteries are used as a power source for devices operating indoors such as remote controllers and cordless telephones. Batteries are used for industrial devices such as electronic measuring instruments, and gas meters as well as these household devices.
Batteries are consumable, and the devices using the batteries as a power source become inoperable when the batteries are empty. Though rechargeable batteries are charged and used repeatedly, the degradation progresses because of the repeated charging and discharging, and consequently the rechargeable batteries are inoperable. Empty batteries not only cause inoperability of devices, but also generate a serious damage such as a data crash in a computer and the like. Thus, it is necessary to precisely check the state of batteries.
A battery checker is known as a device for checking the state of a battery, and ranges from a simple device for evaluating the state of a battery based on a terminal voltage, to a device for measuring an internal resistance of a battery to evaluate the state of the battery. However, there are many different types of batteries, and it is impossible to precisely evaluate the batteries when many different types of batteries are inspected in a unified way as the conventional battery checker. It is necessary to evaluate a battery based on data on the operation state obtained from an inspection procedure corresponding to the type of the battery.
An object of the present invention is to provide a maintenance service system for a battery and a pow

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Battery, based power supply device and associated... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Battery, based power supply device and associated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Battery, based power supply device and associated... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3188025

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.