Batter-coated food products

Food or edible material: processes – compositions – and products – Surface coated – fluid encapsulated – laminated solid... – Isolated whole seed – bean or nut – or material derived therefrom

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S653000, C426S552000

Reexamination Certificate

active

06475541

ABSTRACT:

The invention relates to a batter mix comprising genetically modified potato starch (GMPS), a process for the production of said batter mix, the use of said batter mix for the production of food products, preferably batter coated food products, which may be pre-fried, frozen and then preferably cooked in a microwave oven, whereby the use of the genetically modified potato starch in the batter mix compositions results in unexpected superior organoleptic properties of the food product, especially crispness.
Batter coated fried foods are broadly used. Among the most popular batter coated foods are fried chicken, fish and other meat products. EP-B1-0157800 relates to batters containing high amylose flour extracted from corn and wheat suitable for microwaveable pre-fried foodstuffs. Batter formulations for coating of foodstuff are described, consisting of starch containing products, egg solids, baking powder, cream, preservatives, seasonings, coloring and milk solids. The starch ingredient consists of a high amylose flour containing at least 50% amylose (on total starch) and other starches.
U.S. Pat. No. 5,104,669 relates to microwaveable flour-starch based food product and describes a mixture for a flour-starch-based food product, that heats evenly from a frozen condition, when exposed to microwave energy. The dough formula described herein includes 15-60% high amylose starch extracted from corn besides the flour and water.
WO 93/03634 A1 teaches a microwaveable coating based on starch and cellulose. or the purpose of obtaining crispy food following to heating after previous cooling, a predust formula consisting of high amylopectin starch and methyl cellulose is described, together with a batter formulation consisting of high amylose starch (40-50%), flour (25-40%) and cellulose gum (1-5%).
Many food products cooked by means of microwaving or baking do not show great qualitative differences. Frozen pre-fried foodstuffs however, exhibit great disadvantages when cooked final products are compared, which have been fried, baked or microwaved. In particular, microwaved products show great tendency to be undesirably soggy. There are at least two reasons known for that effect. Firstly, during microwaving, the moisture in the food piece is driven outwards towards the surface, which can cause the food piece to become soggy. During frying or baking, the outer coating receives the most exposure to high temperatures, thus providing a crispy outer coating. Secondly, microwave ovens are limited to a cooking temperature that does not exceed the boiling point of the water and thus, oil retained on or in a food piece after pre-frying will not continue to cook the food piece resulting in a different temperature gradient within the food piece. For example, crispness is an important criterion of pre-fried batter-coated food products which are cooked in a microwave oven.
Beside the fact that a batter mix which provides a crispy pre-fried batter-coated food piece after microwaving is highly desired, the mix must additionally provide other properties in order to obtain an acceptable food product. For example, the interface between the batter coating and food piece after microwaving should preferably be undistinguishable. The crispness of a batter-coated food piece becomes overshadowed as the interface worsens by going from thin and dry to floury, bready and finally to pasty. Avoidance of oil-weepage is also an important factor. Fluid migration during freezing or microwaving due to gravity may result in the pooling or fluids on the underface of the product resulting in a food product which is soggy beneath crispy coating. The batter should also provide good adhesion and cohesion in order to sustain the pressure of moisture. Some batters produce a lacy uneven coating on food pieces. Such a trait is also undesirable because it leads to crumbly coatings. Additionally, the batter should provide a food product with an acceptable and appealing final color.
Based on the great popularity of batter coated and optionally pre-fried food products, there are a number of various batter formulations and coating procedures known but the use of a genetically modified potato starch for the preparation of batter mixes has not been reported up to now.
Therefore, there is a strong need for the availability of batter mixes resulting in food products, in particular, batter-coated food products having improved features like superior crispness, improved taste and mouth-feeling.
It is well known that starch is composed of two fractions, the molecular arrangement of one being linear and the other being branched. The linear fraction of starch is known as amylose and the branched fraction as amylopectin. Methods for separating starch into these two components are known. Starches from different sources, e.g. potato, corn, tapioca, and wheat etc. are characterized by different relative proportions of the amylose and amylopectin components. Some plant species have been genetically developed by classical breeding which are characterized by a large preponderance of the one fraction over the other. For instance, certain varieties of corn which normally contain 22-28% amylose have been developed which yield starch composed of over 50% amylose. These hybrid varieties have been referred to as high amylose corn or amylomaize.
WO 97/11188 A1 teaches genetically modified potato plants producing a high amylose starch of up to about 70% and a decreased phosphate content of about only 10%. WO 97/11188 A1 relates to nucleic acid molecules which code for a starch-granule-bound protein, and a process and recombinant DNA molecules for the production of transgenic plants which synthesize a modified starch with altered viscosity properties and an altered (i.e. decreased) phosphate content compared to starch obtainable from non-transgenic potato plants. The introduction of the coding sequences of plasmids p35S-anti-RL and p35SH-anti-BE into the genome of potato plants is described. The plasmids had been introduced into the genome of the potato plant by using Agrobacterium tumefaciens mediated plant transformation. Plants had been regenerated and selected for the level of reduction of the expression of branching enzyme and RL-enzyme (R1 protein).
Surprisingly, it has now been found that the application of a certain genetically modified potato starch in batter mix compositions results in the improvement of food products exhibiting superior features, like improved organoleptic properties, in particular increased crispness, especially of microwaved pre-frozen food products prepared by use of said batter mix, in particular being coated with a batter mix according to the invention. Furthermore, the use of genetically modified starch in comparison to chemically modified starches is highly advantageous as complex and energy-consuming modification of the starch is avoided. It was additionally surprising, that especially pre-fried or fried comestibles exhibit a superior crispness after cooking in a microwave oven when prepared with the batter mix of the invention. The crispness maintains, even when the comestible is warmed up.
Therefore, the present invention relates to a batter mix, wherein a genetically modified potato starch (GMPS, GMP starch) having a phosphate content less than 85%, preferably less than 50%, more preferably less than 30% and most preferably less than 15% of the corresponding potato starch obtainable from a naturally occurring (i.e., a genetically not modified potato plant) plant is mixed with suitable batter mix ingredients. In this context, the total amount of phosphate in the starch is generally less than 11 nmol glucose-6-phosphate (G6P) per mg starch, preferably less than 7 nmol G6P/mg, more preferably less than 3,5 nmol G6P/mg, and most preferably less than 2 nmol G6P/mg starch. The phosphate content of the starch is to be identified according to the method described in example 8 b of WO 97/11188 A1 via determination of the glucose-6-phosphate amount per mg starch by an enzymatic assay using G6P-dehydrogenase. In another embodiment of i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Batter-coated food products does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Batter-coated food products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Batter-coated food products will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2961177

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.