Base station for controlling initial power ramp-up using...

Telecommunications – Transmitter and receiver at separate stations – Plural transmitters or receivers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S063300, C455S067150, C370S335000

Reexamination Certificate

active

06577876

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to CDMA communication systems. More specifically, the present invention relates to a CDMA communication system which utilizes the transmission of short codes from subscriber units to a base station to reduce the time required for the base station to detect the signal from a subscriber unit. The improved detection time allows a faster ramp-up of the initial transmit power from the subscriber units while reducing the unnecessary power overshoot.
2. Description of Related Art
The use of wireless telecommunication systems has grown dramatically in the last decade as the reliability and capacity of the systems have improved. Wireless communication systems are being utilized in a variety of applications where land line based systems are impractical or impossible to use. Applications of wireless communications include cellular phone communications, communications in remote locations, and temporary communications for disaster recovery. Wireless communication systems have also become an economically viable alternative to replacing aging telephone lines and outdated telephone equipment.
The portion of the RF spectrum available for use by wireless communication systems is a critical resource. The RF spectrum must be shared among all commercial, governmental and military applications. There is a constant desire to improve the efficiency of wireless communication systems in order to increase system capacity.
Code division multiple access (CDMA) wireless communication systems have shown particular promise in this area. Although more traditional time division multiple access (TDMA) and frequency division multiple access (FDMA) systems have improved using the latest technological advances, CDMA systems, in particular Broadband Code Division Multiple Access™ (B-CDMA™) systems, have significant advantages over TDMA and FDMA systems. This efficiency is due to the improved coding and modulation density, interference rejection and multipath tolerance of B-CDMA™ systems, as well as reuse of the same spectrum in every communication cell. The format of CDMA communication signals also makes it extremely difficult to intercept calls, thereby ensuring greater privacy for callers and providing greater immunity against fraud.
In a CDMA system, the same portion of the frequency spectrum is used for communication by all subscriber units. Each subscriber unit's baseband data signal is multiplied by a code sequence, called the “spreading code”, which has a much higher rate than the data. The ratio of the spreading code rate to the data symbol rate is called the “spreading factor” or the “processing gain”. This coding results in a much wider transmission spectrum than the spectrum of the baseband data signal, hence the technique is called “spread spectrum”. Subscriber units and their communications can be discriminated by assigning a unique spreading code to each communication link which is called a CDMA channel. Since all communications are sent over the same frequency band, each CDMA communication overlaps communications from other subscriber units and noise-related signals in both frequency and time.
The use of the same frequency spectrum by a plurality of subscriber units increases the efficiency of the system. However, it also causes a gradual degradation of the performance of the system as the number of users increase. Each subscriber unit detects communication signals with its unique spreading code as valid signals and all other signals are viewed as noise. The stronger the signal from a subscriber unit arrives at the base station, the more interference the base station experiences when receiving and demodulating signals from other subscriber units. Ultimately, the power from one subscriber unit may be great enough to terminate communications of other subscriber units. Accordingly, it is extremely important in wireless CDMA communication systems to control the transmission power of all subscriber units. This is best accomplished by using a closed loop power control algorithm once a communication link is established. A detailed explanation of such a closed loop algorithm is disclosed in U.S. Patent Application entitled Code Division Multiple Access (CDMA) System and Method filed concurrently herewith, which is incorporated by reference as if fully set forth.
The control of transmission power is particularly critical when a subscriber unit is attempting to initiate communications with a base station and a power control loop has not yet been established. Typically, the transmission power required from a subscriber unit changes continuously as a function of the propagation loss, interference from other subscribers, channel noise, fading and other channel characteristics. Therefore, a subscriber unit does not know the power level at which it should start transmitting. If the subscriber unit begins transmitting at a power level that is too high, it may interfere with the communications of other subscriber units and may even terminate the communications of other subscriber units. If the initial transmission power level is too low, the subscriber unit will not be detected by the base station and a communication link will not be established.
There are many methods for controlling transmission power in a CDMA communication system. For example, U.S. Pat. No. 5,056,109 (Gilhousen et al.) discloses a transmission power control system wherein the transmission power of the subscriber unit is based upon periodic signal measurements from both the subscriber unit and the base station. The base station transmits a pilot signal to all subscriber units which analyze the received pilot signal, estimate the power loss in the transmitted signal and adjust their transmission power accordingly. Each subscriber unit includes a non-linear loss output filter which prevents sudden increases in power which would cause interference to other subscriber units. This method is too complex to permit a base station to quickly acquire a subscriber unit while limiting the interference to other subscriber units. In addition, the propagation losses, interference and noise levels experienced in a forward link (transmission from the base station to a subscriber unit) is often not the same as in a reverse link (transmission from a subscriber unit to the base station). Reverse link power estimates based on forward link losses are not precise.
Many other types of prior art transmission power control systems require complex control signaling between communicating units or preselected transmission values to control transmission power. These power control techniques are inflexible and often impractical to implement.
Accordingly, there is a need for an efficient method of controlling the initial ramp-up of transmission power by subscriber units in a wireless CDMA communication system.
SUMMARY OF THE INVENTION
The present invention comprises a novel method of controlling transmission power during the establishment of a channel in a CDMA communication system by utilizing the transmission of a short code from a subscriber unit to a base station during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional spreading code. The ramp-up starts from a power level that is guaranteed to be lower than the required power level for detection by the base station. The subscriber unit quickly increases transmission power while repeatedly transmitting the short code until the signal is detected by the base station. Once the base station detects the short code, it sends an indication to the subscriber unit to cease increasing transmission power. The use of short codes limits power overshoot and interference to other subscriber stations and permits the base station to quickly synchronize to the spreading code used by the subscriber unit.
Accordingly, it is an object of the present invention to provide an improved technique for controlling power ramp-up during establishment of a communication

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Base station for controlling initial power ramp-up using... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Base station for controlling initial power ramp-up using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Base station for controlling initial power ramp-up using... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3114104

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.