Firearms – Electric appliances
Reexamination Certificate
2000-06-09
2001-10-16
Jordan, Charles T. (Department: 3641)
Firearms
Electric appliances
C102S438000
Reexamination Certificate
active
06301819
ABSTRACT:
TECHNICAL FIELD
The invention relates to munitions and firearms.
This invention has particular, but not exclusive, application to a barrel having a plurality of projectiles stacked axially within the barrel together with discrete selectively ignitable propellant charges for propelling the projectiles sequentially through the muzzle of the barrel. Such barrels will be referred to hereinafter as of the type described.
1. Background Art
International Patent Application No. 94/20809 relates to firearms of the type described. Field tests of prototype versions of firearms utilizing barrels of the type described have shown that such barrel assemblies perform to expectations. However the inventor has proposed useful variations, including munitions, as well as improvements which may assist in either the efficient production of such firearms or facilitate their performance or useability. Furthermore the inventor envisages that single barrel rates of fire in excess of 40,000 rounds/minute may be achievable in practice and this possibility creates further scope for munitions of conventional style and firearms utilizing barrels of the type described.
2. Disclosure of Invention
According to one aspect this invention provides a barrel assembly of the type described, wherein:
adjacent projectiles are separated from one another and maintained in spaced apart relationship by locating means separate from the projectiles, and
each projectile includes expandable sealing means for forming an operative seal with the bore of the barrel.
The locating means may be the propellant charge between adjacent projectiles and the sealing means suitably includes a skirt portion of each projectile which expands outwardly when subject to an in-barrel load. The in-barrel load may be applied during installation of the projectiles or after loading such as by tamping to consolidate the column of projectiles and propellant charges or it may result from the firing of an outer projectile and particularly the adjacent outer projectile.
The propellant charge may be form as a solid block to operatively space the projectiles in the barrel or the propellant charge may be encased in metal or other rigid case which may include an embedded primer having external contact means adapted for contacting an pre-positioned electrical contact associated with the barrel. For example the primer could be provided with a sprung contact which may be retracted to enable insertion of the cased charge into the barrel and to spring out into a barrel aperture upon alignment with that aperture for operative contact with its mating barrel contact. If desired the outer case may be consumable or may chemically assist the propellant burn. Furthermore an assembly of stacked and bonded or separate cased charges and projectiles may be provide for reloading a barrel.
The rear end of the projectile may be formed with a skirt about an inwardly reducing recess such as a conical recess or a part-spherical recess or the like into which the propellant charge portion extends and about which rearward movement of the projectile will result in radial expansion of the projectile skirt. This rearward movement may occur by way of compression resulting from a rearward wedging movement of the projectile along the leading portion of the propellant charge it may occur as a result of metal flow from the relatively massive leading part of the projectile to its less massive skirt portion.
Alternatively the projectile may be provided with a rearwardly divergent peripheral sealing flange or collar which is deflected outwardly into sealing engagement with the bore upon rearward movement of the projectile. Furthermore the sealing may be effected by inserting the projectiles into a heated barrel which shrinks onto respective sealing portions of the projectiles. Then again the projectile may comprise a relatively hard mandrel portion located by the propellant charge and which cooperates with a deformable annular portion supported thereabout for expansion into operative sealing engagement with the bore. The deformable annular portion may be moulded about the mandrel to form a unitary projectile which relies on metal flow between the nose of the projectile and its tail for outward expansion about the mandrel portion into sealing engagement with the bore of the barrel.
In a further embodiment the projectile assembly includes a rearwardly expanding anvil surface supporting a sealing collar thereabout and adapted to be radially expanded into sealing engagement with the barrel bore upon forward movement of the projectile through the barrel. In such embodiment it is preferred that the propellant charge have a cylindrical leading portion which abuts the flat end face of the projectile.
If desired, the projectiles may be adapted for seating and/or location within circumferential grooves or by annular ribs in the bore or in rifling grooves in the bore and may include a metal jacket encasing at least the outer end portion of the projectile. The projectile may be provided with contractible peripheral locating rings which extend outwardly into annular grooves in the barrel and which retract into the projectile upon firing to permit its free passage through the barrel.
In another aspect this invention resides broadly in a method of electrical ignition for sequentially igniting the propellant charges of a barrel assembly of the type described, including:
igniting the leading propellant charge by sending an ignition signal through the stacked projectiles, and
causing ignition of the leading propellant charge to arm the next propellant charge for actuation by the next ignition signal. Suitably all propellant charges inwardly from the end of a loaded barrel are disarmed by the insertion of respective insulating fuses disposed between normally closed electrical contacts.
Ignition of the propellant may be achieved electrically or ignition may utilise conventional firing pin type methods such as by using a centre-fire primer igniting the outermost projectile and controlled consequent ignition causing sequential ignition of the propellant charges of subsequent rounds. This may be achieved by controlled rearward leakage of combustion gases or controlled burning of fuse columns extending through the projectiles.
In another form the ignition is electronically controlled with respective propellant charges being associated with primers which are triggered by distinctive ignition signals. For example the primers in the stacked propellant charges may be sequenced for increasing pulse width ignition requirements whereby electronic controls may selectively send ignition pulses of increasing pulse widths to ignite the propellant charges sequentially in a selected time order. Preferably however the propellant charges are ignited by a set pulse width signal and burning of the leading propellant charge arms the next propellant charge for actuation by the next emitted pulse.
Suitably in such embodiments all propellant charges inwardly from the end of a loaded barrel are disarmed by the insertion of respective insulating fuses disposed between normally closed electrical contacts, the fuses being set to burn to enable the contacts to close upon transmission of a suitable triggering signal and each insulating fuse being open to a respective leading propellant charge for ignition thereby.
A number of projectiles can be fired simultaneously, or in quick succession, or in response to repetitive manual actuation of a trigger, for example. In such arrangements the electrical signal may be carried externally of the barrel or it may be carried through the superimposed projectiles which may clip onto one another to continue the electrical circuit through the barrel, or abut in electrical contact with one another. The projectiles may carry the control circuit or they may form a circuit with the barrel.
An advantage which is likely to be gained from dispensing with externally fired primers is the removal of lateral forces within the barrel from firing of the wall mounted primers and the resultant uneven deposit from the primer
Amster Rothstein & Ebenstein
Buckley Denise
Jordan Charles T.
Metal Storm Pty Ltd ACN
LandOfFree
Barrel assembly with axially stacked projectiles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Barrel assembly with axially stacked projectiles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Barrel assembly with axially stacked projectiles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2580948