Bandpass sigma-delta modulator

Coded data generation or conversion – Analog to or from digital conversion – Differential encoder and/or decoder

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S247000

Reexamination Certificate

active

06768435

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to a bandpass sigma-delta modulator, and more particularly to a bandpass sigma-delta modulator using an acoustic resonator or micro-mechanical resonator.
DESCRIPTION OF THE BACKGROUND ART
Cellular telephone systems have become very popular in many countries throughout the world. Unfortunately, the specific standards adopted by different countries are often different and cellular devices from one country will not be operable within another system. Accordingly, completely different handsets are necessary if a person is operating in two different countries having different standards.
As a result of this difficulty, there have been some efforts to provide a single device that is operable in different countries having different standards. A technology known as software-defined radio (SDR) provides one solution to this problem. In the SDR system, the entire band of RF or IF signal is digitized and the channel is selected using a programmable digital filter. Thus, the SDR can be reconfigured through the software to suit different standards. However, this effort has not been completely successful because it requires a high-speed A/D converter that must have not only high-speed, but also provide adequate resolution. In the ideal SDR arrangement, the RF is directly digitized in the receiver. It requires that the A/D converter have a speed in the gigahertz range, and also have a dynamic range over a 100 dB, which is equivalent to a 16-bit resolution. Among the various A/D converters, the sigma-delta A/D converter has promise in achieving the desired dynamic range. However, it is only achievable at a much lower frequency band. As the frequency increases, circuit imperfections become dominant and degrade the dynamic range of the A/D converter. At the gigahertz sampling frequency range, the highest dynamic range for the reported bandpass sigma-delta modulator is 75 dB, which only corresponds to a 12.5 bit resolution.
A sigma-delta A/D converter consists of a sigma-delta modulator and a digital filter.
FIG. 1
shows a typical arrangement of a bandpass sigma-delta modulator. The key element in the modulator is the resonator
2
which provides the quantization noise shaping. That is, the resonator acts as a bandpass filter in a band around its resonance frequency. The resonator needs to operate at a high frequency and have a high Q (quality factor) value. The output of the resonator is passed to a quantizer
3
which produces a digital “1” signal if its input exceeds a threshold and a digital “0” signal if the input is less than the threshold. This digital signal of a series of 0's and 1's becomes the output of the sigma-delta modulator. These signals are also fed back to a D/A converter
4
, and the resultant analog signal is applied as a second input to summation device
1
which also receives the input to the modulator. The difference between the input and the feedback of the summation device produces an input to the resonator.
FIG. 2
shows a typical output spectrum from a fourth order bandpass sigma-delta modulator where the quantization noise is shaped away from the resonance frequency, resulting in a very high dynamic range. The depth of the notch is related to the Q value of the resonator. The higher the Q value is, the deeper the notch. The noise shaping is also dependent on the order of the modulator. Higher order modulators provide better noise shaping and hence a higher dynamic range.
Typically, the resonator is made of one of three different electronic circuits, namely, a passive L-C tank, a transconductor-capacitor or a switch-capacitor. However, none of these circuits have been successful in the situation described. The first two circuits cannot achieve a high Q value due to parasitic losses and non-linearity. Typical Q values are around 10 and 40 for the integrated L-C tank with and without Q enhancement, respectively. The enhanced Q value for the transconductor-capacitor resonator can be up to 300 at a frequency of several hundred MHz. The switch-capacitor resonator is restricted by its low resonant frequency (<100 MHz) due to the slow settling behavior of the circuit. The use of these types of resonators prevents the sigma-delta modulator from achieving a high speed and high dynamic range at the same time as is required in an SDR situation. In order to achieve a workable SDR system, it is necessary to find a resonator which is usable in a sigma-delta modulator to achieve high speed and high dynamic range.
SUMMARY OF THE INVENTION
Accordingly, one object of this invention is to provide a bandpass sigma-delta modulator having high-speed and high-dynamic range.
Another object of the invention is to provide a bandpass sigma-delta modulator using a micro-mechanical resonator.
Another object of the invention is to provide a bandpass sigma-delta modulator utilizing an acoustic resonator.
A further object of this invention is to provide a second order bandpass sigma-delta modulator having two D/A converters.
A still further object of this invention is to provide a fourth order sigma-delta modulator having two D/A converters and two summation devices.
A still further object of this invention is to provide a sigma-delta A/D converter including a sigma-delta modulator having a resonator of the micro-mechanical or acoustical type.
Briefly, these and other objects of the invention are achieved by using either a micro-mechanical resonator or an acoustical resonator as a bandpass filter which provides an output to a quantizer. The output of the quantizer acts as the output of the modulator and is also fed back to two different D/A converters. The output of the two converters is adjusted by a gain and applied to a summation device, along with the input. The output of the summation device is applied as an input to the resonator. In the fourth order device, two resonators are used along with a second summation device.


REFERENCES:
patent: 5392039 (1995-02-01), Thurston
patent: 6281652 (2001-08-01), Ryan et al.
patent: 6346898 (2002-02-01), Melanson
patent: 6362764 (2002-03-01), Niimi et al.
patent: 6414615 (2002-07-01), Cheng
patent: 6462687 (2002-10-01), Eshraghi et al.
patent: 6473011 (2002-10-01), Steensgaard-Madsen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bandpass sigma-delta modulator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bandpass sigma-delta modulator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bandpass sigma-delta modulator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3215001

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.