Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2001-02-01
2003-03-18
Mendez, Manuel (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C606S194000
Reexamination Certificate
active
06533755
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains generally to a catheter balloon for medical dilation and stent delivery procedures. In particular, the present invention relates to the ability of a balloon, having a reversed-cone configuration, to secure a stent upon the balloon's body by selectively folding the balloon material forming the reversed-cones.
BACKGROUND OF THE INVENTION
Balloon catheters are used in the treatment of a variety of medical conditions. They are used extensively in conjunction with urinary, biliary, and vascular procedures. Among the more frequent uses for balloon catheters, however, is in vascular angioplasty of the peripheral and coronary arteries.
A vascular angioplasty procedure dilates the arteries that are obstructed (the stenosis), thereby improving blood flow through that region of the vasculature. In a typical angioplasty procedure, a balloon catheter is inserted percutaneously into the patient's arterial system. This percutaneous insertion is usually through the femoral artery. Once inside the patient's arterial system, the balloon catheter is advanced until the distal end of the catheter, where the balloon resides, is disposed adjacent to the obstruction. Once adjacent the stenosis, the balloon is inflated under fluid pressure to dilate the artery in the region of the stenosis.
Stents and stent delivery assemblies are utilized in conjunction with vascular angioplasty. Because dilated stenoses are known to reobstruct, a stent is often implanted to maintain the patency of the vessel.
A stent is a generally cylindrical prosthesis which is introduced, via a balloon catheter, into a lumen of a body vessel. The stent is positioned, and secured onto, the balloon in a configuration having a generally reduced diameter. Once the balloon catheter is positioned adjacent the desired location within the vasculature, the balloon is expanded. This balloon expansion subsequently causes the stent to increase its radial configuration from a reduced diameter (delivery diameter) to an expanded one (deployment diameter). In its expanded configuration, the stent supports and reinforces the vessel wall while maintaining the vessel in an open and unobstructed configuration.
The structure and functions of stents are well known. Stents used in conjunction with vascular angioplasty are shown in U.S. Pat. No. 5,064,435 to Porter; U.S. Pat. No. 5,071,407 to Termin et al.; U.S. Pat. No. 5,221,261 to Termin et al.; U.S. Pat. No. 5,234,457 to Anderson; U.S. Pat. No. 5,370,691 to Samson; U.S. Pat. No. 5,378,239 to Termin et al.; U.S. Pat. No. 5,401,257 to Chevalier, Jr. et al.; and U.S. Pat. No. 5,464,450 to Buschemi et al., all of which disclosures are incorporated herein by reference.
A distinguishable feature between stents is whether they are self-expanding or balloon expandable. Both self-expanding and balloon expandable stent are well known and widely available. The present invention is particularly concerned with enhanced stent securement and safer stent loading in the delivery and deployment of balloon expandable stents.
Balloon expandable stents are crimped to their reduced diameter about the balloon portion of the catheter assembly. The stents are gently crimped onto the balloon either by hand, or with a tool. Once the stent is mounted, the catheter system is ready for delivery. There are, however, two complications associated with crimping stents to balloon catheters: (1) excessive crimping may damage the stent, the balloon, or the inner lumen of the catheter; and (2) inadequate securement force results in failure of the stent to maintain its axial position during advancement within the human anatomy.
Most expandable stents have an minimum compression diameter. The minimum compression diameter is the smallest radial profile that a stent may be reduced to without causing damage to the stent. This damage often decreases the functionality and reliability of the stent's expansion, as well as its ability to maintain the patency of a vessel wall. Furthermore, the stent must be crimped over that portion of the balloon which is expandable in order to have the entire length of the stent expanded against the vessel wall on deployment. The expandable portion of present balloons typically have an insufficient outer diameter for direct attachment of a stent in the balloon's folded, deflated configuration. Therefore, crimping a stent on this section alone will cause the stent to bend undesirably or it will not be held adequately in axial position without artificially building-up the diameter under the balloon—or other means to create bulk for stent crimping.
Maintaining the stent's axial position during the advancement of the catheter to the deployment site is critical. If a stent is not adequately compressed upon the balloon, the stent may fail to secure properly to the catheter assembly and could be dislodged from the catheter during advancement within the human anatomy. It is important, therefore, that the location where the stent is to be secured have an outer diameter (in the folded deflated configuration) greater than or equal to the stent's minimum compression diameter so that it may be firmly secured to the balloon catheter assembly. There are a number of devices used for maintaining a stent's axial securement about the balloon catheter.
U.S. Pat. No. 4,950,227 to Savin et al., relates to a stent delivery system in which a sleeve overlaps the distal or proximal margin (or both) of the stent during delivery. This sleeve maintains the stent's axial position during the advancement of the catheter assembly to the deployment site. To deploy the stent, the stent margins are freed of the protective sleeve(s) and the sleeve then collapses toward the delivery catheter for removal.
PCT International Application No. WO 98/07390, published Feb. 26, 1998, discloses a delivery catheter using mounting bodies that have outer diameters exceeding the minimum compression diameter of a stent. The outer diameters of the mounting bodies are also circumferentially larger than the deflated balloon diameter. Therefore, the stent is crimped securely upon the mounting bodies in order to insure axial position during the catheter's advancement. The use of mounting bodies, however, affects the flexibility of the inner shaft within the balloon which is not desired. This application is incorporated herein by reference.
SUMMARY OF THE INVENTION
This invention is generally directed to a catheter apparatus suitable for performing angioplasty and for delivery of stents to body cavities. In particular, this invention is directed to a balloon catheter having a balloon with reverse-cone configuration. This reverse-cone configuration allows stents, or other implantable devices, to securely, yet reversibly, attach directly to the body of a catheter balloon without the need, expense, or detrimental impact on performance due to additional apparatus such as mounting bodies.
An additional embodiment of the invention is a means for selectively folding the balloon material in order to secure a stent upon a balloon that is not shaped with reverse cones. The embodiment is particularly directed to improved arrangements between balloon catheters known in the art and a stent. This embodiment teaches a means for reversibly attaching and securing a stent to a balloon catheter without the need for additional fastening devices. In particular, this embodiment illustrates the creation of pleated bodies that act as bulky masses for which to attach a stent. A further embodiment of the invention is the manipulation of balloon material densities, in either the reverse-coned configuration, or in those balloons known in the art, to obtain a desired outer diameter for the pleated bodies.
The present invention is also directed to a method for formation of the reverse-cone balloon. In particular, the methods used to convert a balloon known in the art into a balloon having a reverse-cone configuration.
REFERENCES:
patent: 3726283 (1973-04-01), Dye et al.
patent: 4395806 (1983-08
Crompton Seager & Tufte LLC
Han Mark
Mendez Manuel
Sci-Med Life Systems, Inc.
LandOfFree
Balloon with reversed cones does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Balloon with reversed cones, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Balloon with reversed cones will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3007355