Balloon displays

Amusement devices: toys – Inflatable

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C446S221000

Reexamination Certificate

active

06332823

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is related generally to balloons for use as decoration and decorative architecture. More specifically, the present invention is related to systems for making and supporting balloon structures and displays.
2. Discussion of Background
Balloons have been used as decorations for decades, but they have enjoyed increased usage in the recent past. There are two type of balloons commonly used for decor plus a variety of patented, specialty balloons.
Balloons have traditionally been made of natural latex. Molds are dipped into a vat of liquid latex. Some of the latex adheres to the mold. The mold is removed and the adhered latex dries into a highly elastic membrane. The membrane is removed from the mold for use. The balloon thus created is usually a bulbous form with a single, narrow, tubular stem, and opening for inflation. Once inflated, latex balloons are most commonly sealed by tying a knot in the inflation stem of the balloon. Less common are the use of mechanical fasteners and internally installed, self-sealing valves to seal latex balloons.
There are a large variety of techniques and systems used in the trade to connect latex balloons directly to each other to some common material or object to serve structural and decorative functions. There are, however, relatively few systems especially designed and manufactured for these purposes.
Adhesives are commonly applied to at least one of the surfaces to be connected and the surfaces pressed together and held until the adhesive has set sufficiently to keep the surfaces in contact without special assistance. The adhesives come in a variety of forms including sprays, liquids, temperature based adhesives, and tapes.
There are several mechanical methods for connecting balloons. These include twisting, tying, pinching, and squeezing balloons directly to each other and/or to some structures in common connection with other balloons.
Balloons have long been tied to each other at the neck (the inflation stem) of the balloon. The long, slender balloons (often called “pencil balloons” or “entertainer balloons”) are often pinched and twisted at various points along their length. Those points of twisting are themselves twisted together with other such points on the same or other balloons. Balloons have long been tied with and tied to such things such as string, ribbon, monofiliment (plastic or nylon fishing line), wire, and cable ties.
Balloons are often attached to each other or to common structures by actually piercing the skin of the balloon in the section of the balloon stem which is not being used to seal the air chamber. This is often done with paper clips or other sections of wire which are then hooked, twisted or tied to each other or to more substantial structures.
Lighter weight metal rods and tubes, as well as plastic rods and tubes are frequently framing materials of choice as they come in forms stiff enough to keep balloons in planned arrangements and are still flexible enough to be formed by hand or with simple tools. When large numbers of balloons are to be contained, frequently the control is supplied by using bags or nets.
There are an enormous variety of combinations of specific techniques for using adhesives and similar complexities available in mechanical techniques as well. When the two approaches are combined the possibilities multiply again.
For example, adhesives can be used to stick balloons to each other to form a sheet of balloons. The sheet might then be bent into a curved surface and held in that shape by mechanical connections. Such a sheet might form a decorative wall, a canopy or a tunnel.
Helium filled balloons might be connected mechanically to a light weight line so that they float into an arch. The balloons might then be stuck to each other with adhesives to assure that the balloons do not spin around and hide important graphics on their surfaces.
The use of grids has followed two basic paradigms. The first paradigm employs holes cut in sheets of material. Selected holes hold balloons by squeezing the balloon into the hole or by passing the stem or a tie connected to the balloon through the hole and attaching it to the material. While these cut outs are generally accomplished with an efficient die cutting process, this paradigm generates considerable waste from the cut outs made in the processing. The framing elements (around the apertures) and the apertures remain essentially the same size when put to use as they are at the time of manufacture. The finished display is limited to the original size of the sheet plus overhang from the connected balloons.
The second paradigm assembles elements utilizing basically rigid joints. Such an (approach usually has less wasted material than in the first paradigm, but has the added expense of making those joints. The framing elements (around the apertures) and the apertures remain essentially the same size when put to use as they are at the time of manufacture. The finished display is limited to the size of the manufactured framework plus overhang from the connected balloons.
The use of these common techniques along with manufactured frameworks has developed largely in the last decade. There have been only a few of these frameworks designed and manufactured specifically for use with balloons.
For example, in 1985 Marvin Hardy reports using pegboard as a framework to hold balloons with the necks of balloons pulled through the regular pattern of small holes in these sheets of composite wood. Over the next years he used slotted plastic disks to pinch the necks of the balloons to keep them from pulling back through the holes. Spoony Morrill, according to August 1987 issue of
Balloons Today
magazine, introduced the use of existing, flexible, net grids as framework for balloon graphics. Balloons were attached in a single layer with paper clips or by tying them directly to the nets.
Graham Rouse, in March 1988 at a convention of the National Association of Balloon Artists, introduced Rouse Balloon Art Designer Panels™ specifically designed and produced for balloon decorating. These corrugated board panels form a regular, semirigid, and modular system having an array of apertures to connect and hold balloons in a network for walls and other graphic and sculptural displays. Balloons were generally attached by pulling the neck of a balloon through one hole, stretching the neck to a slit radiating from an adjacent hole, and then pinching the neck in the slit.
Later that year, in July, the Rouse Balloon Art Designer Panels™ were exhibited at the Flowers, Inc. Balloons open house as a system for squeezing balloons into apertures smaller than the natural diameter of the inflated balloons in order to hold the balloons in place for graphic and sculptural displays.
In 1990, Marvin Hardy began to use his Jiffy Strips™, which are
¾″ wide strips of translucent plastic having small holes and slits at
1″ intervals to hold balloons tightly against the strips by stretching the neck through a hole and then pinching the balloon neck into an adjacent slit. Jiffy Strips™ may be placed at right angles to form grids or grouped in roughly parallel strips to cover large and irregular surfaces.
About the same time, Kevin LaCount used manufactured wooden lattices to hold balloons by squeezing the balloons into the openings in the lattice. In commercial decoration applications, David Gully used manufactured wire grids into which he squeezed balloons to create decorative patterns.
In 1993, Marvin Hardy introduced his MagiGrid™. This looks much like a rectangular grid wire fence only made of heavier metal rods and straps. The size of the openings may be changed from one use to the next. Balloons are squeezed sideways (i.e., held by pressure against top, bottom, and two sides) into the grid. This configuration hides the necks as well as most of the frame and promotes viewing from front or back.
More recently, in 1994, James Skistimas introduced his Skistimas Design System™. This system combines the modular concep

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Balloon displays does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Balloon displays, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Balloon displays will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2571381

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.