Balloon catheter with stent securement means

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S101020

Reexamination Certificate

active

06419685

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an assembly method for delivering and deploying an inflation expandable stent. particularly within a lumen of a body vessel. More specifically, this invention relates to the provision of a securement component positioned over the inner catheter, and beneath a balloon and a loaded stent, to maintain the stent on the catheter assembly during delivery to a stent deployment site.
2. Description of Relevant Art
Stents and stent delivery assemblies are utilized in a number of medical procedures and situations, and as such their structure and function are well-known. A stent is a general cylindrical prosthesis introduced via a catheter into a lumen of a body vessel in a configuration having a generally reduced diameter and then expanded to the diameter of the vessel. In its expanded configuration, the stent supports and reinforces the vessel walls while maintaining the vessel in an open, unobstructed condition.
Both self-expanding and inflation expandable stents are well-known and widely available. Self-expanding stents must be maintained under positive external pressure in order to maintain their reduced diameter configuration during delivery of the stent to its deployment site. Inflation expandable stents (also known as balloon expandable stents) are crimped to their reduced diameter about the delivery catheter, positioned at the deployment site, and then expanded to the vessel by diameter by fluid inflation of the balloon positioned between the stent and the delivery catheter. The present invention is particularly concerned with enhanced stent securement and safer stent loading in the delivery and deployment of balloon expandable stents.
In angioplasty procedure, there may be restenosis of the artery, which either necessitates another angioplasty procedure, a surgical bi-pass procedure, or some method of repairing or strengthening the area. To prevent restenosis and strengthen the area, a physician can implant an intravascular prosthesis for maintaining vascular patency, i.e. a stent, inside the artery at the lesion. The stent is expanded to a larger diameter for placement in the vasculature, often by the balloon portion of the catheter. Stents delivered to a restricted coronary artery, expanded to a larger diameter as by a balloon catheter, and left in place in the artery at the site of a dilated lesion are shown in U.S. Pat. No. 4,740,207 to Kreamer; U.S. Pat. No. 5,007,926 to Derbyshire; U.S. Pat. No. 4,733,665 to Palmaz; U.S. Pat. No. 5,026,377 to Burton et al.; U.S. Pat. No. 5,158,548 to Lau et al.; U.S. Pat. No. 5,242,399 to Lau et al.; U.S. Pat. No. 5,344,426 to Lau et al.; U.S. Pat. No. 5,415,664 to Pinchuck; U.S. Pat. No. 5,453,090 to Martinez et al.; U.S. Pat. No. 4,950,227 to Savin; U.S. Pat. No. 5,403,341 to Solar; U.S. Pat. No. 5,108,416 to Ryan et al.; and European Patent Application No. 707837A1 to Scheiban, all of which are incorporated herein by reference. A stent particularly preferred for use with this invention is described in PCT Application No. 96/03092-A1, published Feb. 8, 1996, the content of which is incorporated herein by reference.
In advancing a balloon expandable stent through a body vessel to the deployment site, there are a number of important considerations. The stent must be able to securely maintain its axial position on the delivery catheter. The stent, particularly its distal and proximal ends, are sometimes protected to prevent distortion of the stent, and minimize trauma to the vessel walls. Balloon expandable stent delivery and deployment assemblies are known which utilize restraining means that overlay the stent during delivery. U.S. Pat. No. 4,950,227 to Savin et al., relates to a balloon expandable stent delivery system in which a sleeve overlaps the distal or proximal margin (or both) of the stent during delivery. During inflation of the stent at the deployment site, the stent margins are freed of the protective sleeve(s) and the sleeves then collapse toward the delivery catheter for removal. A number of balloon expandable stent delivery and deployment assemblies do not use overlaying restraining members, such as the Savin sleeves, to position the stent for delivery. European Pat. Application No. EP 055 3960A1 to Lau et al., uses an elastic sheath interspaced between the balloon and the stent. The sheath is said to act as a barrier to protect the balloon from the stent, allow uniform stent expansion, decrease balloon deflation time, prevent undesirable balloon flattening upon deflation and provide a friction substrate for the stent. The Lau sheath can be positioned on the inside or outside of the balloon. U.S. Pat. No. 5,409,495 to Osborne, similarly uses an elastic sleeve or sheath surrounding and in contact with the balloon for controlling the balloon radial expansion. In addition, Osborne is said to use restraining bands or a pair of balloons to achieve controllable stent expansion characteristics. U.S. Pat. No. 5,403,341 to Solar, relates to stent delivery and deployment assembly which uses a retaining sheath positioned about opposite ends of the compressed state. The retaining sheaths of Solar are adapted to tear under pressure as the stent is radially expanded, thus releasing the stent for engagement with the sheaths. U.S. Pat. No. 5,108,416 to Ryan et al. describes a stent introducer system which uses one or two flexible end caps and annular socket surrounding the balloon to position the stent during introduction to the deployment site. The content of all of these patents is incorporated herein by reference.
In positioning a balloon expandable stent on the delivery catheter over the fluid expandable balloon, the stent must be smoothly and evenly crimped to closely conform to the overall profile of the catheter and the unexpanded balloon. It has been noted that, due to physical properties of the material used in manufacturing the stent (stainless steel, tantalum, platinum or platinum alloys, or shape memory alloys such as Nitinol™) there is a certain amount of “recoil” of the stent despite the most careful and firm crimping. That is the stent evidences a tendency to slightly open up from the fully crimped position and once the crimping force has been released. For example, in the typical stent delivery and deployment assembly, if the stent has been fully crimped to a diameter of approximately 0.0035″, the stent has been observed to open up or recoil to approximately 0.0037″. This phenomenon has been characterized as “recoil crimping”. Due to recoil crimping to this slightly enlarged diameter, it can be understood that the stent tends to evidence a certain amount of looseness from its desired close adherence to the overall profile of the underlying catheter and balloon. That is, the stent tends to have a perceptible relatively slack fit in its mounted and crimped position. During delivery, the stent can thus tend to slip and dislocate from its desired position on the catheter or even become separate from the catheter, requiring further intervention by the physician.
Further, there is a possibility of damaging the balloon during the stent crimping as a result of pinching the balloon material between the metal stent and any metal (or protruding object) on the inner guide lumen (e.g. marker bands).
According to the present invention, a securement means such as a corrugated (accordion-type) tube is secured over the inner catheter beneath the balloon to compensate for the undesired looseness or slack that due to recoil crimping and to aid in securing the stent to the balloon, as well as protecting the balloon material from being sandwiched between the stent and any metal or protruding item which may be mounted on the inner shaft/guide wire lumen, for delivery of the stent. The corrugated tube provides additional volume for improved stent securement, i.e. more surface area to crimp onto, and also maintains flexibility. In addition, when metal marker bands are employed on the inner catheter, the tubing aids in preventing damage to the balloon durin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Balloon catheter with stent securement means does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Balloon catheter with stent securement means, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Balloon catheter with stent securement means will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2912717

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.