Balloon catheter with delivery side holes

Surgery – Means for introducing or removing material from body for... – Material introduced into and removed from body through...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S058000, C604S096010

Reexamination Certificate

active

06638243

ABSTRACT:

FIELD OF THE INVENTION
This invention is a medical device. More specifically, it is a balloon catheter having a lumen with a port proximal of a balloon through which therapeutic or diagnostic agents may be delivered.
BACKGROUND OF THE INVENTION
Balloon Catheter Overview
Balloon catheters are medical devices that have been used to facilitate percutaneous medical treatment such as pressure monitoring, cardiac output and flow monitoring, angioplasty, artificial vaso-occlusion, and cardiac support. Balloon catheters generally have an elongated shaft with a fluid expandable balloon on the distal end and a coupler on the proximal end. Balloon catheter designs generally include a lumen that extends from the coupler end to the balloon end and facilitates delivery of fluid therethrough for inflating the balloon. One way that balloon catheters may be classified is by the way they are adapted for delivery into remote in-vivo sites. Among such balloon catheter categories are “flow-directed,” “over-the-wire,” “fixed-wire,” and “single-lumen” balloon catheters.
“Flow-directed” balloon catheters are generally balloon catheters in which the balloon is inflated at a low pressure and acts like a sail in the blood stream. The inflated balloon, along with the attached catheter, is pulled downstream to a remote location by the blood flow acting on the inflated balloon.
“Over-the-wire” balloon catheters are generally balloon catheters that slideably track over an independent wire rail to a distally remote location. Generally, a radiopaque, steerable guide wire may be negotiated, via radiographic visualization, to a desired remote location such as a distal site in the vascular tree. Over-the-wire catheters generally have two lumens. A first lumen, the guide wire lumen, is used for slidably receiving and tracking over a steerable guide wire. The guide wire lumen often extends substantially the full length of the catheter and terminates at each end in open ports. Alternatively, the guide wire lumen may extend only between a distal port and a proximal port that is situated on the catheter distally of the catheter's proximal end. The second lumen terminates at a distal end in a sealed, expandable balloon, and at the opposite proximal end in an open port. The proximal open end may be coupled with a pressurizable fluid source for inflating and deflating the balloon.
When a guide wire lumen extends the length of the catheter and the proximal port is accessible to a doctor during in-vivo use, there is a benefit in being able to exchange multiple wires slideably through the guide wire lumen. The balloon catheter is kept in place as a conduit delivery device for such guide wire exchanges—the wires do not need to be re-steered and tracked to the desired site each time. Also, this full length co-axial arrangement between catheter and wire allows manipulation of the wire's placement during balloon inflation. This may be desirable, for instance, for seating the wire in a side vessel distal to the balloon inflation site to retain access thereto in the case the vasculature distal to the inflation site collapses during the artificial total occlusion created by the balloon.
In contrast to the features just described, over-the-wire catheters may alternatively have the guide wire lumen extend only along a distal portion of the catheter length, with the proximal guide wire port disposed distally to the catheter proximal end. With this type of over-the-wire design, a shortened length of catheter rides co-axially on the wire. As such, a much shorter wire may be used (compared to full length co-axial over-the-wire designs) and still facilitate the exchangability of the catheter over the wire. However, the proximal guide wire port in such designs is generally disposed within the body spaces during in-vivo use. This often renders guide wire exchanges through the guide wire lumen quite difficult and often impossible while the distal positioning of such catheters is maintained.
“Fixed-wire” balloon catheters have a steerable guide wire integrated into the balloon catheter assembly. In this way, the balloon catheter and guide wire may be advanced into distal anatomy as a unit. The guide wire may be torqued to cause a rotational response at the tip; although, in fixed wire catheters the guide wire is somewhat restrained in the limits of its movement such that it is not truly independent of the catheter. For example, the guide wire in a fixed wire balloon catheter usually may not be advanced or retracted axially and has a limit in the number of rotating turns that can be imparted to the wire relative to the catheter.
A single lumen may be provided in fixed wire balloon catheters, serving the function both as a balloon inflation lumen and a guide wire lumen. This provides a more modest profile when compared with multilumen catheter designs. In order to effectuate balloon inflation in a fixed wire balloon design having only a single lumen, the distal end of the balloon is sealed onto the wire. This may be accomplished either by affixing the balloon to the wire or by limiting the clearance between the wire and the balloon.
More recent balloon catheter designs are generally referred to as “single-lumen” catheters. Such single lumen catheters may include a guide wire that is independent of the catheter. The single lumen of “single lumen” catheters facilitates balloon inflation and at the same time is co-axial with the guide wire, as is generally the case in many fixed wire balloon catheter designs. However, this embodiment of the “single lumen” balloon catheter often has a valve mechanism provided on the catheter (or on the wire) such that a fluid seal may be selectively achieved between the wire and the catheter. Thus, the wire is slidable within the lumen and may be advanced and torqued relatively independently of the catheter in order to select and track to remote sites. Yet, the lumen may be tightly sealed onto the wire via the valve mechanism provided for balloon inflation when desired.
One example of a single lumen balloon catheter having a valve situated on the guide wire for effecting a seal at the balloon catheter tip is found in U.S. Pat. No. 5,304,198 to Samson, et al. Samson discloses a single-lumen balloon catheter having a valve seat on the distal end of the catheter, distal of the balloon, which may be operated by a control wire having a valve plug disposed on the wire. The valve seat may be engaged by the valve plug from either direction, depending on the installation of the control wire. Pushing or pulling on the wire, depending on the initial orientation of the wire relative to the valve seat, will seat the valve plug in the valve seat and allow the introduction of fluid through the catheter lumen to inflate the balloon.
Other examples of balloon catheters that generally have one lumen that is coaxially disposed about the guide wire and is also used for balloon inflation are disclosed in the following references: U.S. Pat. No. 5,171,221 to Samson; U.S. Pat. No. 4,606,347 to Fogarty, et al.; U.S. Pat. No. 5,085,636 to Burns; U.S. Pat. No. 4,813,934 to Engelson, et al.; and U.S. Pat. No. 5,437,632 to Engelson, et al.
Delivery Catheter Overview
Although balloon catheters may facilitate medical treatment by providing a fluid expandable balloon on a distal portion thereof, delivery catheters facilitate medical treatment by providing a conduit with one or more distal ports for remote delivery of diagnostic or therapeutic agents. Such agents may be fluids, such as drugs or radiopaque dyes, or devices, such as wires or vaso-occlusive coils.
Delivery catheters are often delivered to remote in-vivo locations in a manner similar to that used for over-the-wire balloon catheters. A steerable guide wire is extended to a point at or near the desired treatment site. Delivery catheters are usually provided with a lumen that allows the delivery catheter to co-axially track over the wire to the desired site.
For “end hole” delivery catheters, agents such as fluids may be delivered out a distal end port provided. Fluid agents

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Balloon catheter with delivery side holes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Balloon catheter with delivery side holes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Balloon catheter with delivery side holes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3169778

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.