Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2000-10-04
2003-09-30
Casler, Brian L. (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
Reexamination Certificate
active
06626861
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to surgical devices and more particularly, to an improved balloon catheter apparatus and method for enlarging a flow path within a vascular conduit or other body passageway.
BACKGROUND OF THE INVENTION
Catheters having inflatable balloons affixed to their leading edge are commonly used in a variety of surgical applications. One application for such a “balloon catheter,” is for dilating blood vessels which have been partially or entirely blocked by deposits or other obstructions. The balloon catheter is introduced into the affected blood vessel and the deflated balloon is maneuvered into a blocked or otherwise obstructed flow path within the vessel. By inflating the balloon, the deposits or obstructions are compressed against the inner wall of the vessel, thereby enlarging the flow path. Other applications include the removal and/or compression of adherent materials such as atherosclerotic plaque, thrombosis, stenosis, occlusions, clots, stones, and other potentially obstructive material from within vascular conduits and other body passageways.
Prior devices used in such applications include catheters having a catheter shaft and an inflatable balloon located near the leading or distal end of the catheter. The balloon of such a catheter usually consists of an inflatable sleeve or bulb fitted on the outside of the tubular catheter shaft. The balloon is inflated by the infusion of a fluid into the balloon chamber from within the shaft. It is important that the balloon's inflation be controlled, such that it is not overinflated, resulting in an overexpanded balloon which can rupture or otherwise damage the affected vascular conduit or other body conduit.
In an effort to reduce the dangers of over expansion and thus, potential damage to the conduit, modem catheters are commonly configured with reinforced balloons that can only expand to a predetermined maximum diameter, regardless of the interior pressure applied. While effective at limiting the radial expansion of the associated balloon, these catheters are only effective when used within a vascular or other conduit of a specified size. Conduits having different or changing diameters may require the use of a number of such catheters, each having a specified maximum balloon diameter. In addition, many applications could benefit from a balloon having a specific configuration or shape for use within the conduit. These specific shapes or configurations could advantageously be used to compress or remove occluding material, for infusing treatment fluids as well as for therapeutic effects. Thus, there is a need for a balloon catheter which can restrain the maximum radial expansion of the inflated balloon and can also configure the inflated balloon to a specified shape or configuration. There is also a need for such a balloon catheter which has the ability to limit the radial expansion of the inflated balloon to a number of different maximum radial diameters.
When removing occluding material from within a vascular conduit, such as a blood vessel, it is important that the surface of the balloon catheter be relatively smooth in order to prevent damage to the inner lining. Prior art balloon catheters are generally provided with a smooth outer surface for this purpose. However, it is often desirable to have an abrasive outer surface for contacting the inner walls of the vascular conduit. The abrasive outer surface allows for improved removal of the occluding material as well as for traction. In addition, there is also a need for a balloon catheter having a more abrasive outer surface for use in other applications such as the removal of thrombus or other obstructions from within an artificial graft. These applications often require more intense scrubbing. Thus, there is a need for a balloon catheter which has an abrasive outer surface, yet which is not damaging to the inner lining of the vascular conduit or other conduit. There is also a need for such an abrasive outer surface that retains a consistent abrasiveness regardless of the balloon's inflation or expansion. There is also a need for a balloon catheter which includes an abrasive outer surface suitable for removing thrombus or other occluding material from within an artificial graft.
SUMMARY
The present invention overcomes these problems of the past by providing a surgical device having a coaxial over-structure or outer sleeve which is operable independently of an internally disposed balloon or bladder. By using an outer sleeve, which is independent of the generally surrounded balloon, and which is radially expandable and collapsible through actuation of the surgical device, the maximum radial and axial expansion of the inflated balloon can be controlled. In addition, the use of an outer sleeve which is independently expandable into a number of predetermined configurations, allows the balloon to be constrained within a plurality of different sizes and shapes. The surgical device of the present invention is thus, capable of conforming to a plurality of different body conduits and sizes without the need to change to a different size surgical device. The surgical device of the present invention also solves the need for a device which can control the size and shape of an internal balloon or bladder regardless of the application.
The present invention also satisfies the need for a surgical device which provides traction within a vascular conduit or other passageway by providing a balloon catheter having an independent outer sleeve. The outer sleeve is preferably configured with an abrasive or tractive outer surface for contact against the inner walls of the conduit. The outer sleeve is advantageously made from a woven mesh material which can be expanded and collapsed into a number of predetermined shapes and sizes. The balloon may be inflated to conform to the outer sleeve and may be constrained within the predetermined configuration of the mesh sleeve. Fluid pressure may be increased within the balloon to increase traction with the wall of the conduit. In addition, the mesh sleeve may also be utilized to limit the overall length of the inflated balloon.
The present invention also satisfies the need for a surgical device which may be used for cleaning and removing obstructions and clots from within an artificial graft by providing a balloon catheter having an independent mesh sleeve with an abrasive outer surface. For purposes of this disclosure, an artificial graft or shunt is considered a vascular conduit and all discussions relating to vascular or other body conduits shall include artificial grafts, shunts and similar passageways.
By providing a balloon catheter which utilizes procedures similar to those of the prior art balloon embolectomy catheters, a surgeon can effectively use the balloon catheter of the present invention without the need to learn new or additional procedures. The balloon catheter of the present invention includes an outer mesh sleeve made from a woven filament which is connected to the catheter at one end, either proximally or distally of the balloon, and which has an irregular outer surface. Inflation of the balloon expands the outer mesh sleeve and compresses the filament mesh into the obstructing material.
The present invention is generally directed to an improved balloon catheter for enlarging a flow passage within a vascular conduit or other body passageway. The improved balloon catheter includes a catheter tube which has a longitudinal axis which extends between a proximal end and a distal end. An elongate inner member may be disposed coaxially within the catheter tube. Preferably, this inner member is longitudinally slidable within the catheter tube and configured such that a longitudinal passageway is created between the inner member and the catheter tube for passage of a fluid.
An inflatable and deflatable balloon is disposed coaxially about a distal end of the inner member. The balloon includes a proximal balloon end which is connected to the distal end of the catheter tube and a distal balloo
Chi-Sing Eduardo
Hart Charles C.
Myers Richard L.
Vandenbroek Frans
Applied Medical Resources
Casler Brian L.
Han Mark K
Myers Richard L.
LandOfFree
Balloon catheter apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Balloon catheter apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Balloon catheter apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3099896