Balloon catheter

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S093010, C604S164010

Reexamination Certificate

active

06638245

ABSTRACT:

FIELD OF THE INVENTION
This invention is a medical device. In particular it is a balloon catheter having at least two lumens. One of the lumens is a large working lumen. The inventive catheter is especially useful as a guide catheter or a micro catheter and may be used in a variety of therapeutic and diagnostic procedures variously in the neuro-, peripheral, and coronary vasculature. In particular, it has value in treating neurovascular embolic strokes in combination with other devices which are delivered to the stroke site through the working lumen. The remainder of the lumens typically are used to inflate and to deflate the balloon. It is highly preferable that the balloon or inflatable member be situated in a recess in the outer wall of the inventive catheter. The distal end of the catheter past the balloon may be tapered. The inventive device has a very low profile as compared to other catheters of the balloon catheter genre. It may include other features such as variable stiffness along the axis of the device and anti-kinking components. The balloon may be compliant in nature.
When intended for use in treating embolic stroke, the inventive catheter may be a component of a kit including a clot retriever. Further, amongst other procedures, the invention includes methods of temporarily blocking a vascular lumen, of removing coronary, neurovascular, or peripheral emboli. Other procedures, where diagnosis or treatment is needed in a vascular space and a large working lumen is desired, are suitable procedures for the inventive balloon catheter.
BACKGROUND OF THE INVENTION
This invention relates generally to medical balloon catheters, their structures, and methods of using them. In particular, the present invention relates to the construction of both large and small diameter; typically braid-reinforced balloon catheters having controlled flexibility, a soft distal tip and a typically elastomeric balloon near the distal tip for the partial or total occlusion of a vessel. This catheter has a comparatively large working lumen and carries at least one inflation lumen independent of the working lumen. The inventive catheter may be used for a wide variety of medical applications, such as interventional cardiological, peripheral, or neuroradiology procedures, but is particularly useful in support of intercranial selective catheterization.
Medical catheters are used for a variety of purposes, including interventional therapy, drug delivery, diagnosis, perfusion, and the like. Catheters for each of these purposes may be introduced to target sites within a patient's body by guiding the catheter through the vascular system, and a wide variety of specific catheter designs have been proposed for different uses.
Examples of the present invention are large lumen balloon catheters used in supporting procedures that, in turn, use small diameter tubular access catheters. Such procedures include diagnostic and interventional neurological techniques, such as the imaging and treatment of aneurysms, tumors, arteriovenous malformations, fistulas, and the like. Practical treatment of embolic stroke is novel.
The neurological vasculature places a number of requirements on the small catheters to be used there. The catheters should be quite fine. The blood vessels in the brain are frequently as small as several millimeters, or less, requiring that the intervening catheters have an outside diameter as small as one French (0.33 mm). In addition to small size, the brain vasculature is highly tortuous, requiring neurological catheters to be very flexible, particularly at the distal ends, to pass through the regions of tortuosity. The blood vessels of the brain are quite fragile, so it is desirable that the catheter have a soft, non-traumatic exterior to prevent injury.
Similarly, catheters used in supporting these procedures have similar requirements. Balloon catheters used in directing the smaller neurovascular catheters desirably have thin walls and are easily maneuverable. The central, or “working” lumen desirably is quite large to assist in effecting the procedures.
Although the peripheral and coronary vasculature is typically not as small nor as tortuous as is the neurovasculature, the advances in neurovascular catheter technology is quite applicable in advancing these procedures as well.
Typical of balloon guide catheters are those shown in U.S. Pat. No. 5,628,754, to Shevlin et al; U.S. Pat. No. 5,833,659, to Kranys; U.S. Pat. No. 5,836,912, to Kusleika; U.S. Pat. No. 5,681,336, to Clement et al; and U.S. Pat. Nos. 5,759,173 and 5,728,063, both to Preissman et al. None of these patents show the structure disclosed herein.
SUMMARY OF THE INVENTION
This invention involves a balloon catheter. The balloon is situated distally on the catheter body. The inventive catheter typically has a large working lumen extending from one end of the catheter to the other. The outer surface of the balloon may have a substantially constant outside diameter. The balloon is situated in a recessed region at the distal end often just proximal of a soft, tapered tip.
An example of the inventive balloon catheter is made up of an outer or first elongate tubular member having an outer surface, a proximal end, and a distal end. In this variation the first elongate member has the noted substantially constant diameter and the radially recessed region near the distal end containing the balloon. As an example, the balloon may be a longitudinally stretched inflatable member situated within the radially recessed region. The balloon, may be compliant, is connected to at least one fluid supply lumen that is independent of the working lumen. When compliant, the balloon may be stretched longitudinally at least 10%, perhaps 15% or more, upon attachment to the first elongate tubular member. Exemplary materials for the balloon include natural and synthetic rubbers and silicone materials. Chlorinated Neoprene materials such as Chronoprene or C-Plex are suitable balloon materials.
The balloon itself may be coated with various materials. For instance, the balloon may be coated with a hydrophilic material. One exemplified hydrophilic coating comprises sodium hyaluronic salt. Similarly, coatings based upon polyvinylprolidone (PVP) or polyurethane may be used. Hydrophilic coating materials such as SLIP-COAT, GLIDE-COAT, GRAFT-COAT by STS Biopolymers Inc., SLIPSKIN by MCTec, HYDRO-SLIP C by CT Biomaterials, a division of Cardio Tech International, ARMORGLIDE from ARROW, and the like are suitable.
In this variation, a second (or inner) elongate tubular member that is substantially concentric with the first elongate tubular member forms an annular lumen between the two for supplying fluid to the balloon. The interior surface of the inner elongate member forms the working lumen.
The first elongate member joins the second elongate tubular member distal of the balloon.
The second elongate tubular member generally contains a stiffener member situated in its wall to provide kink resistance and torqueability to the balloon catheter. The stiffener member may be a coil or a braid. The inner member may have varying stiffness between its distal and its proximal end, being formed of segments of polymers having different stiffnesses.
In other variations of the inventive catheter, the first elongate tubular member has a wall that contains one or more fluid supply lumens for inflating the balloon. Those fluid supply lumens may be within tubing, perhaps spirally embedded in the wall or perhaps a woven braid embedded in the wall. The tubing may be square tubing or round tubing or other convenient shape. The tubing may be polymeric or metallic. The metallic tubing may be a superelastic alloy.
Ancillary features, e.g., radio-opaque marker bands distal of said inflatable member and fluid fittings, are included.
The second elongate tubular member may include a lubricious, polymeric tubular inner-most tubing member.
Another subgeneric variation of the inventive catheter has the fluid supply lumens in the wall of the first tubing member. The lumens may be integral with

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Balloon catheter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Balloon catheter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Balloon catheter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3157792

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.