Balloon catheter

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S096010, C604S104000, C604S103080, C604S532000, C128S898000, C600S435000

Reexamination Certificate

active

06264633

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention concerns a balloon catheter for medical applications having an inflatable balloon disposed on the catheter shaft for fixing the balloon catheter within an organ cavity or for blocking the lumen of an organ cavity.
This type of catheter is known in the art for a plurality of applications in urology, the tracheal area, or the esophagus.
Conventional catheters are, e.g. during intubation, fixed in the trachea.
In addition, blocking catheters are known in the art of heart surgery which are inserted into the aortic arch through the groin. The positioning of this type of blocking catheter is difficult from a technical point of view, has associated complications, and is time consuming. In addition, it is not possible to relieve the immobilized heart during cardioplegia.
It is therefore the purpose of the invention to create a balloon catheter which guarantees a liquid-tight and position-stable occlusion of the aorta, which gently interacts with the occluded organ cavity in the vicinity of the blocking, which allows for a short and simplified implantation path, and which simultaneously facilitates relieving the heart and cardioplegia.
SUMMARY OF THE INVENTION
This purpose is achieved in accordance with the invention in that the balloon has a structured and/or rugged outer surface.
The balloon catheter in accordance with the invention has the substantial advantage that the balloon can be pressed in a non-slipping fashion onto the aorta vessel intima. The structured outer surface of the rubber-elastic balloon can better seat on the inner surfaces of the vessels with increased friction without injuring the vessel structure in the occluded region. The outer surface of the rubber-elastic balloon has mountains and valleys which adjust to irregularities in the inner wall of the vessel and which hold onto the irregularities or given vessel structures when the balloon is inflated so that a positioned and inflated balloon does not move even under pressure to guarantee a liquid-tight blocking of an organ cavity.
A visible structured and/or rugged outer surface of the balloon guarantees that the catheter used has a balloon properly selected for the application at hand. If, in addition, the balloon is made from latex the excellent material properties thereof, namely extremely high stretchability, and good elasticity, can be advantageously utilized for blocking of an organ cavity.
In an additional configuration of the invention, the structurized and/or rugged outer surface is effected by means of a solvent and/or a coagulation agent, e.g. toluene, which gives the balloon its irregular outer surface.
This procedure for manufacturing a balloon in accordance with the invention has the advantage that the latex balloon can be produced with a dipping procedure. Directly following dipping, the latex film having the desired balloon shape is submerged into a predetermined solution which irregularly structures and roughens the outer surface of the latex balloon without negatively influencing the elasticity of the latex material for its intended application. The structuring of the outer surface of the balloon can also be effected mechanically or mechanically and thermally. The outer surface structuring provided by an appropriate solvent has the additional advantage for production of the balloon in accordance with the invention that this method step is simple and not time consuming.
In a further configuration of the invention, the latex balloon has a base form which is adjusted to a first and to a second end region on the shaft section of a catheter.
This has the advantage that the fundamental size of the manufactured balloon can be kept small and suitable end sections of the balloon can, for example, be manufactured having a size which is smaller than that of a shaft section of a catheter to assure that these end regions conform, without folds, to the outer surface of a shaft section when introduced thereon and stick thereto and/or are attachable to the catheter shaft in a liquid-tight and pressure-tight manner using threads.
In an improved embodiment of the invention, the balloon catheter has a guiding lumen in the catheter shaft which is closed on the side facing the patient and which ends in a catheter tip which is preferentially thickened. The catheter is formed and disposed in a stable location at the tip region of the balloon catheter. In addition, the balloon catheter has a first catheter shaft jacket which terminates at the end of the balloon facing away from the patient and which has at least one first eye. The first eye connects to a first lumen and provides communication between this first lumen and the outside environment. In addition, a second catheter jacket is provided for on the balloon catheter which is disposed on the first catheter jacket and ends at a separation from the first eye, wherein the second catheter jacket has at least one second eye which connects the second lumen to the outside.
The configuration of the balloon catheter in accordance with the invention facilitates applications in substantially three areas which, in part, allow for new techniques in heart surgery. The balloon catheter having the structured surface balloon can be used for operations,
1. where calcification does not permit a transverse clamping of the aorta;
2. for LIMA/RIMA anastomosis using MIS procedures; and
3. for MIS venovenostomy between the coronary vessel and the aorta descendens.
The abbreviations “LIMA” and “RIMA” stand for the left arterial mammaria interna and the right arterial mammaria interna respectively (the new designations: arteria thoracica interna left or right).
A balloon catheter having the features in accordance with the invention can be utilized as a transventricular aorta blocking balloon having a cardioplegia channel and a vent channel for use in bypass surgery. The balloon catheter in accordance with the invention facilitates aorta occlusion and cardioplegia of an arterialsclerosis-inflicted aorta without clamping. An aorta clamping (prior art) can damage the aorta wall and cause washing of calcium particles into the brain with associated embolic failure.
With the increase in the number of patients having terminal arterial sclerosis and the increasing frequency of patients required renewed operation, the use of the balloon catheter in accordance with the invention simplifies heart surgery on the patient. The balloon catheter in accordance with the invention has a guide channel for use of a mandrin. The inflatable latex balloon having the roughened outer surface facilitates a reliable blocking of the aorta and, via a first lumen, cardioplegia solutions can flow between the balloon and the aorta valve into the aorta and the coronary vessels. The heart undergoing cardioplegia is relieved via a second lumen and the blood received by the second lumen is transported to a heart-lung-machine. The improved balloon catheter in accordance with the invention can be used for secure blocking of the aorta ascendens during bypass operations even if the aorta ascendens has very strong calcification in this region. Conventional transverse clamping of the aorta could lead to aorta damage. The balloon catheter improved in accordance with the invention can also, however, be utilized in operations within the framework of the conventional minimal invasive coronary surgery as well as within the framework of minimally invasive coronary surgery under very new technology which also facilitates vein bypass.
During bypass operations the calcification in the aorta ascendens causes substantial medical problems. Within the framework of an invasive operation, the aorta ascendens has to be clamped in a transverse fashion with the associated danger of damage to the calcified aorta. If damage or destruction to the vessel thereby occurs the resulting medical problems can only be handled with extreme difficulty and can only be overcome by means of a very time-consuming operation. In addition, the clamping-off of the aorta ascendens can lead to the washing of calcium particles into

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Balloon catheter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Balloon catheter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Balloon catheter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2504228

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.