Balloon car and aerial trolley system

Railways – Balloon

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C104S112000

Reexamination Certificate

active

06792872

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a novel continuous and stable aerial trolley system for the transport of passengers or other cargo across land or shallow water bodies in one or more carriage assemblies suspended from a ‘lighter-than-air’ balloon apparatus, and with the carriage(s) secured to, and guided by, and propelled along a continuous and elevated track system in a stable and energy-efficient manner.
BACKGROUND OF THE INVENTION
Concurrent with the evolution of airships, others proposed systems that employed lighter-than-air balloon-craft to lift cargo, but which used ground-based equipment and cables to tether said balloon-craft and guide them to their destination. In 1887, Muller proposed the first known of such devices (U.S. Pat. No. 372,381). Muller proposed dual balloon craft guided along ropes or steel cables strung in parallel between two fixed towers, with one of said towers being at higher elevation than the other (on an incline). Muller's scheme was clever, but his system was limited to short distances up and down inclines, and his design was wrought with terrible instability problems. In 1891, McDonnel proposed a similar system (U.S. Pat. No. 446,786), which also lacked a continuous track system and also posed serious instability problems.
Some other simple and effective schemes of cable-guided and cable-propelled balloon craft have been successfully deployed in the foresting industry for moving logs across inclined tracts of timberland. These systems are traditionally called skylines. Skylines typically involve the use of a lighter-than-air balloon to lift a suspended bundle of logs, and co-attachment of the suspended load to a cable strung between two or more opposing winch systems that are anchored at opposite ends of the tract to be forested. Examples are Patents by Fenn (1969—U.S. Pat. No. 3,448,864), Langford (1975—U.S. Pat. No. 3,865,251), and Walters (2000—U.S. Pat. No. 6,145,679). Skylines are effective and energy-efficient at moving non-fragile, inanimate objects. However, skylines lack any means to stabilize the suspended load against twisting and rocking motions, thus making them inadequate for transport of human passengers. Furthermore, all known skylines lack a continuous track system, and thus are very limited in range.
Finally, and most relevant to the present invention, other systems have been proposed where aerial balloon craft are secured to, and guided along continuous land-based track systems. These have traditionally been referred to as ‘aerial trolleys’. These were the first tethered aerial balloon craft proposals that promised potential to transport passengers and/or cargo over appreciable distances.
In 1897, Brodbeck (U.S. Pat. No. 586,590) proposed a balloon-suspended carriage with attachment of said carriage to a taughtly drawn pair of steel cables via trolley wheel attachments that allowed free rolling movement along said cables. The proposed craft was to be propelled by an aero-propeller mounted to the carriage with said aero-propeller driven by an electric motor. Brodbeck suggested a plurality of track masts to support said cables and thus enable a continuous track system. However, Brodbeck's proposed system was very unstable and prone to severe tilting and/or rocking motion from side to side, especially in the presence of strong cross winds.
In 1900, Suter (U.S. Pat. No. 654,687) proposed a simple scheme whereby an aerial balloon with suspended gondola was guided along a single taught cable, with said cable being extended continuously and supported by a plurality of track masts. The craft was tethered to a trolley wheel assembly that rolled along the cable. Propulsion of Suter's craft along the guide cable was to be effected by simple buoyancy of the balloon craft. As such, his system was limited to inclined terrain and had very limited range. Furthermore, Suter's craft posed severe carriage instability problems, similar to a skyline. Furthermore, Suter's track mast support design as explained would have been woefully inadequate to withstand lateral forces of any appreciable cross winds as exerted upon the balloon and transmitted to the track mast via the cable connection.
In 1912, Fawkes (U.S. Pat. No. 1,028,010) combined the features of prior patents by Brodbeck and Suter, and proposed a self-propelled aerial balloon craft that was secured to and guided by a continuous cable-way. His cable-way with support masts was nearly identical to Suter's except that it could also be applied to horizontal terrain due to the provision of a self-propulsion mechanism. His propulsion scheme involved a plurality of aero-propellers attached to the carriage, with said propellers all being driven by a single on-board electric motor. Regardless, Fawke's device had the same basic inadequacies and limitations as Suter's device (inadequate carriage stability and inadequate track support).
In 1923, Nilsson (U.S. Pat. No. 1,468,508) proposed an aerial trolley system whereby the balloon-suspended carriage was secured to and guided along a more robust steel rail type of track system. His track system featured a single long and straight steel rail track supported by a plurality of track masts at regularly spaced intervals. His design also featured two trolley devices that gripped onto and rolled across said railway. Said trolley devices were attached to bottom of the carriage at its front and rear ends by flexible linkage members, thereby tethering the carriage and balloon to the track by virtue of the trolley devices as they interact with the railway. Nilsson's system was the first to propose an aerial trolley system where both the balloon and carriage floated and rode above the track system. However, Nilsson's proposed use of flexible linkages from the carriage of the balloon craft to the trolleys which engaged the track made his craft especially vulnerable to sideways tilting and rocking motions, thus posing grossly inadequate stability for the transport of human passengers or fragile cargo.
Finally, another prior art device that is pertinent to the present invention, but not heretofore associated in any way with lighter-than-air balloon craft, nor with aerial trolleys, was the ‘cable-car’ invented and developed by Andrew Hallidie in 1873. Hallidie's system featured a simple carriage with wheels that ran along a pair of parallel steel rails, with said carriage being propelled by linkage to a cable-drive system that was located below the railway (below ground) and oriented longitudinally down the track center-line. His cable drive scheme consisted of a very long length of steel cable, with its terminal ends connected to each other so as to form a large ‘endless’ loop. Said cable loop was strung around fixed pulleys at both terminal ends of the track system and also supported throughout length of the track system at below grade elevation via a plurality of rollers spaced at regular intervals. At least one of the terminal pulleys was motor-driven to effect propulsion of the cable. Propulsion of the carriage was effected by a linkage member extending vertically from bottom of the carriage to the below-grade cable. Hallidie's track design provided a continuous slot passageway oriented longitudinally down the center-line of the track system. Said slot-way permitted lateral passage of said vertical linkage member from the carriage to the moving cable, with said linkage causing the carriage to move along the railway under influence of the moving cable.
An ideal aerial trolley system would include a ‘lighter-than-air’, helium-filled balloon craft with a suspended cargo carriage that is secured to, and guided along, a continuous elevated track system capable of passing over obstacles. An ideal aerial trolley system would include a track system that includes elements which impart stability to the balloon-craft's carriage against sideways tilting or rocking motion as said balloon-craft traverses across the continuous track system.
An ideal aerial trolley system would include an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Balloon car and aerial trolley system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Balloon car and aerial trolley system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Balloon car and aerial trolley system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3248899

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.