Ballistic aerosol marking apparatus for treating a substrate

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S047000, C347S075000, C347S083000

Reexamination Certificate

active

06340216

ABSTRACT:

BACKGROUND
The present invention relates generally to the field of making devices, and more particularly to a device capable of applying a treatment material to a substrate by introducing the treatment material into a high-velocity propellant stream.
Ink jet is currently a common printing technology. There are a variety of types of ink jet printing, including thermal ink jet (TIJ), piezo-electric ink jet, etc. In general, liquid ink droplets are ejected from an orifice located at a one terminus of a channel. In a TIJ printer, for example, a droplet is ejected by the explosive formation of a vapor bubble within an ink-bearing channel. The vapor bubble is formed by means of a heater, in the form of a resistor, located on one surface of the channel.
We have identified several disadvantages with TIJ (and other ink jet) systems known in the art. For a 300 spot-per-inch (spi) TIJ system, the exit orifice from which an ink droplet is ejected is typically on the order of about 64 &mgr;m in width, with a channel-to-channel spacing (pitch) of about 84 &mgr;m, and for a 600 dpi system width is about 35 &mgr;m and pitch of about 42 &mgr;m. A limit on the size of the exit orifice is imposed by the viscosity of the fluid ink used by these systems. It is possible to lower the viscosity of the ink by diluting it in increasing amounts of liquid (e.g., water) with an aim to reducing the exit orifice width. However, the increased liquid content of the ink results in increased wicking, paper wrinkle, and slower drying time of the ejected ink droplet, which negatively affects resolution, image quality (e.g., minimum spot size, inter-color mixing, spot shape), etc. The effect of this orifice width limitation is to limit resolution of TIJ printing, for example to well below 900 spi, because spot size is a function of the width of the exit orifice, and resolution is a function of spot size.
Another disadvantage of known ink jet technologies is the difficulty of producing greyscale printing. That is, it is very difficult for an ink jet system to produce varying size spots on a printed substrate. If one lowers the propulsive force (heat in a TIJ system) so as to eject less ink in an attempt to produce a smaller dot, or likewise increases the propulsive force to eject more ink and thereby to produce a larger dot, the trajectory of the ejected droplet is affected. This in turn renders precise dot placement difficult or impossible, and not only makes monochrome greyscale printing problematic, it makes multiple color greyscale ink jet printing impracticable. In addition, preferred greyscale printing is obtained not by varying the dot size, as is the case for TIJ, but by varying the dot density while keeping a constant dot size.
Still another disadvantage of common ink jet systems is rate of marking obtained. Approximately 80% of the time required to print a spot is taken by waiting for the ink jet channel to refill with ink by capillary action. To a certain degree, a more dilute ink flows faster, but raises the problem of wicking, substrate wrinkle, drying time, etc. discussed above.
One problem common to ejection printing systems is that the channels may become clogged. Systems such as TIJ which employ aqueous ink colorants are often sensitive to this problem, and routinely employ non-printing cycles for channel cleaning during operation. This is required since ink typically sits in an ejector waiting to be ejected during operation, and while sitting may begin to dry and lead to clogging.
Importantly, such prior art marking systems are not employed to apply a treatment material, such as a finish material, surface texture material, etc., to a substrate. Rather, such treatment materials are applied typically in the fabrication of the substrate or by dedicated process and equipment following marking.
Other technologies which may be relevant as background to the present invention include electrostatic grids, electrostatic ejection (so-called tone jet), acoustic ink printing, and certain aerosol and atomizing systems such as dye sublimation.
SUMMARY
The present invention is a novel system for applying a treatment material to a substrate, directly or indirectly, which overcomes the disadvantages referred to above, as well as others discussed further herein. In particular, the present invention is a system of the type including a propellant which travels through a channel, and a treatment material which is controllably (i.e., modifiable in use) introduced, or metered, into the channel such that energy from the propellant propels the treatment material to the substrate. The propellant is usually a dry gas which may continuously flow through the channel while the apparatus is in an operative configuration (i.e., in a power-on or similar state ready to mark). The system is referred to as “ballistic aerosol marking” in the sense that application of a material to a substrate (defined herein as “marking”) is achieved by in essence launching a non-colloidal, solid or semi-solid particulate, or alternatively a liquid, marking material at a substrate. The shape of the channel may result in a collimated (or focused) flight of the propellant and treatment material (or equivalently marking material) onto the substrate.
The following summary and detailed description describe many of the general features of a ballistic aerosol marking apparatus, and method of employing same. The present invention is, however, a subset of the complete description contained herein as will be apparent from the claims hereof.
In our system, the propellant may be introduced at a propellant port into the channel to form a propellant stream. A marking material may then be introduced into the propellant stream from one or more marking material inlet ports. The propellant may enter the channel at a high velocity. Alternatively, the propellant may be introduced into the channel at a high pressure, and the channel may include a constriction (e.g., de Laval or similar converging/diverging type nozzle) for converting the high pressure of the propellant to high velocity. In such a case, the propellant is introduced at a port located at a proximal end of the channel (defined as the converging region), and the marking material ports are provided near the distal end of the channel (at or further down-stream of a region defined as the diverging region), allowing for introduction of marking material into the propellant stream.
The port may provide for pre-marking treatment material (such as a marking material adherent), post-marking treatment material (such as a substrate surface finish material, e.g., matte or gloss coating, etc.), marking material not otherwise visible to the unaided eye (e.g., magnetic particle-bearing material, ultra violet-fluorescent material, etc.) or other marking material to be applied to the substrate. The marking material is imparted with kinetic energy from the propellant stream, and ejected from the channel at an exit orifice located at the distal end of the channel in a direction toward a substrate.
One or more such channels may be provided in a structure which, in one embodiment, is referred to herein as a print head. The width of the exit (or ejection) orifice of a channel is generally on the order of 250 &mgr;m or smaller, preferably in the range of 100 &mgr;m or smaller. Where more than one channel is provided, the pitch, or spacing from edge to edge (or center to center) between adjacent channels may also be on the order of 250 &mgr;m or smaller, preferably in the range of 100 &mgr;m or smaller. Alternatively, the channels may be staggered, allowing reduced edge-to-edge spacing. The exit orifice and/or some or all of each channel may have a circular, semicircular, oval, square, rectangular, triangular or other cross sectional shape when viewed along the direction of flow of the propellant stream (the channel's longitudinal axis).
The material to be applied to the substrate may be transported to a port by one or more of a wide variety of ways, including simple gravity feed, hydrodynamic, electrostatic, or ultrasonic tran

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ballistic aerosol marking apparatus for treating a substrate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ballistic aerosol marking apparatus for treating a substrate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ballistic aerosol marking apparatus for treating a substrate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2829677

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.