Ballast circuit

Electric lamp and discharge devices: systems – Periodic switch in the supply circuit – Silicon controlled rectifier ignition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C315S272000, C315S291000, C315SDIG004, C315SDIG007

Reexamination Certificate

active

06452343

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a ballast circuit for operating a discharge lamp comprising
input terminals for connection to a supply voltage source,
a rectifier coupled to the input terminals for rectifying a low frequency supply voltage supplied by the supply voltage source,
a buffer capacitor circuit coupled to an output of the rectifier,
an inverter coupled to the buffer capacitor circuit for generating a high frequency lamp current out of a DC voltage that is present over the buffer capacitor circut during operation, said inverter comprising a control circuit for controlling the operation of the inverter.
Such a ballast circuit is known from WO 98/46054.The known ballast circuit is equipped with a dimming circuit for controlling the light output of the discharge lamp in dependency of a dimming signal and with a conversion circuit for converting the shape of the low frequency supply voltage present between the input terminals into a dimming signal. The shape of the low frequency supply voltage in turn depends on the phase angle of a TRIAC dimmer that is used in combination with the known ballast circuit. Thanks to the presence of the dimming circuit and the conversion circuit, the ballast circuit is TRIAC dimmable. When the phase angle of the TRIAC dimmer is changed, the shape of the low frequency supply voltage changes accordingly so that the dimming signal generated by the conversion circuit and therefore the light output of the discharge lamp change as well. Up to a phase angle of 90 degrees the DC voltage that is present over the buffer capacitor means remains substantially unchanged. For phase angles higher than 90 degrees, however, the DC voltage that is present over the buffer capacitor means decreases when the phase angle is increased. When the voltage over the buffer capacitor means drops too much the control circuit will receive insufficient energy to operate properly and as a result of that the discharge lamp will extinguish. After the discharge lamp has extinguished the power consumption of the ballast circuit is much lower so that the DC voltage over the buffer capacitor means will increase. After a certain amount of increase of the DC voltage the control circuit is activated again and will ignite the discharge lamp. Once the discharge lamp has ignited the power consumption of the ballast circuit is increased so much that the DC voltage over the buffer capacitor means drops once more resulting in an almost immediate extinguishing of the discharge lamp. The cycle of events described hereabove repeats itself time after time resulting in flickering of the discharge lamp. Besides the fact that this is unpleasant to look at, the electrodes will be damaged since the lamp ignites without the electrodes having been preheated in a proper way.
BRIEF SUMMARY OF THE INVENTION
The invention aims to provide a ballast circuit that is TRIAC dimmable but does not have the disadvantages mentioned hereabove.
A ballast circuit as mentioned in the opening paragraph is therefor according to the invention characterized in that the ballast circuit comprises a shut off circuit for switching off the control circuit if the DC voltage over the buffer capacitor circuit (hereinafter referred to simply as buffer capacitor drops below a first predetermined value.
If a ballast circuit according to the invention is used in combination with a TRIAC dimmer and a user chooses a phase angle that is too high, the DC voltage over the buffer capacitor means drops below the first predetermined value and the shut off circuit switches the control circuit off so that the discharge lamp extinguishes and flickering of the discharge lamp is prevented.
It is for instance possible to implement the shut off circuit in such a way that it is equipped with a reactivation switch for the user of the ballast circuit. In that case the control circuit remains switched off until a user of the ballast circuit has used the reactivation switch. Such a reactivation switch could be implemented as the mains switch for electrically connecting the ballast circuit to the supply voltage source. However, unless the phase angle of the TRIAC dimmer has been adjusted to a lower value, after reactivation the control circuit will be switched off again virtually immediately after the discharge lamp has ignited. As a result, in case a user of the ballast circuit chooses a value of the phase angle that results in the switching off of the control circuit, that user will have to use both the TRIAC dimmer and the reactivation switch to reactivate the ballast circuit. Since this is a strong disadvantage the shut off circuit preferably comprises a hysteresis circuit for reactivating the control circuit after the first shut off of the control circuit if the DC voltage over the buffer capacitor means rises above a second predetermined value that is higher than the first predetermined value, and switching off the control circuit when the DC voltage over the buffer capacitor drops below the second predetermined value.
When the shut off circuit has switched off the control circuit and the discharge lamp has extinguished, the ballast circuit no longer consumes any power or consumes only a relatively small amount of power. This results in an increase of the DC voltage that is present over the buffer capacitor. Because the second predetermined value is higher than the first predetermined value this increase does not result in an immediate reactivation of the control circuit. The control circuit is only reactivated when the DC voltage over the buffer capacitor has increased substantially. It is to be noted that the second predetermined value must not be chosen too high, since that would prevent the reactivation circuit from reactivating the control circuit even if a user decreases the phase angle of the TRIAC dimmer to a value that allows stable lamp operation, after the control circuit has been shut off.
If the ballast circuit does not consume any power after the shut off circuit has switched off the control circuit, the TRIAC dimmer carries no load current after the shut off of the control circuit. In practice it has been found that often under these circumstances the TRIAC dimmer fires at random. As a consequence the voltage over the buffer capacitor means reaches its maximum value and the control circuit is reactivated. However, as soon as the discharge lamp has ignited, a load current is once more present so that the TRIAC dimmer fires at the adjusted phase angle and the voltage over the buffer capacitor means drop below the first predetermined value so that the control circuit is switched off and the discharge lamp extinguishes. After the extinguishing of the discharge lamp the TRIAC dimmer once more fires at random etc. so that flickering of the discharge lamp results. This flickering can be prevented by assuring that there is a load current present even when the control circuit has been switched off. This can be realized in an effective manner by connecting the input terminals by means of a circuit part that carries a current as long as the low frequency supply voltage has an amplitude that differs from zero. Preferably the circuit part comprises an ohmic resistor.
In case the control circuit is reactivated after having been shut off, it will generally first control the operation of the inverter in such a way that the electrodes of the discharge lamp are preheated. The power consumption of the ballast circuit is relatively low during preheating when compared with the power consumption during ignition and during normal or dimmed operation. In spite of the fact that the power consumption is relatively low, the second predetermined value is chosen so that this power consumption will cause the DC voltage over the buffer capacitor to drop below the second predetermined value while the ballast circuit is still preheating the electrodes of the discharge lamp. As a result the control circuit is once more switched off before the discharge lamp has ignited and therefor flickering is prevented. After the control circuit has been sw

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ballast circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ballast circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ballast circuit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2817149

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.