Ball tracking system and methods

Radiant energy – Photocells; circuits and apparatus – Photocell controlled circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S208100, C473S168000

Reexamination Certificate

active

06320173

ABSTRACT:

BACKGROUND
Driving ranges are widely used by golfers to practice their swing for the game of golf. Typically, a user of the driving range rents a bucket of golf balls and positions herself at one of the tee-off positions. These tee-off positions routinely have a mat of artificial grass and a rubber tee mounted through a hole in the grass so that the user can successively mount golf balls and hit them into the driving range with little or no damage to the tee-off position.
One problem with such driving ranges is that it is difficult, at best, to determine the distance of a golf ball hit into the driving range. First, there are typically several or many users simultaneously hitting balls into the range, making the discrimination of your ball difficult. Secondly, the only markers available to a user relating to distance are —typically—a series of signs spaced in set distances (such as fifty yards) from the user. Accordingly, a user can sometimes estimate the distance a ball travels, once hit, to their perceived accuracy in determining where the ball landed relative to one of those signs.
Even this technique is difficult. Driving ranges generally use old and dull-looking balls, reducing their reflective properties and further hindering a user's ability to monitor golf ball movement, especially at dusk or at night, with artificial lighting.
In addition to distance measurements, users of the driving range can only estimate other performance factors, such as slices, draws and the like, by visually monitoring the ball's travel during flight. There is no quantitative analysis of the swing, and there can be no playback of a prior hit unless the user also has a camcorder.
Finally, users at a driving range have no automatic method of statistically measuring their performances, over time, for various factors such as average club distance, drive improvements, etc., other than by keeping a paper record of the data in a log book or portable computer.
OBJECTS OF THE INVENTION
It is, accordingly, an object of the invention to provide systems and methods which solve or improve the above-referenced problems in the prior art.
Another object of the invention provides a system which determines the distance between a user and the location where the ball lands relative to the user.
A further object of the invention is to simultaneously determine and inform a plurality of users of the respective distances to their golf balls, once hit.
Yet another object of the invention is to provide systems which inform one or more users of the angle to which a user hits a golf ball at a driving range.
Still another object of the invention is to provide a system which monitors and determines golf distances on a driving range without regard to the amount of solar or artificial light at the driving range.
Yet another object of the invention is to provide methods for accurately assessing and notifying one or more users at a driving range of the distance to their respective golf balls, once the user hits the ball into the range.
Another object of the invention is to provide a 3-D monitoring system for a driving range which permits accurate positioning and determination of the golf ball within the driving range.
Still another object of the invention provides methods and systems for providing statistical factors to users at a driving range.
Another object of the invention provides a visual display, and selective playback, of a ball driven from a particular user's tee-off position.
These and other objects will become apparent in the description which follows.
SUMMARY OF THE INVENTION
In one aspect, the system of the invention includes a CCD camera, e.g., a solid state camera, mounted so as to view at least part of the driving range, including one or more users of the driving range and the ground of the driving range in front of those users. The camera has a plurality of detector elements forming an array which are used to collect successive pictures, or “frames”, of image data. Each frame of image data represents a small fraction of time (hereinafter “frame time”) such that, in effect, the image is “still” relative to typical human motions. Further, this frame time is fast relative to the motion of a golf ball hit by a user so that the system of the invention can track golf ball movement. The system monitors when a golf ball leaves a tee-off position (in one aspect by assigning one or more pixels to unique locations on the driving range, relative to a specific user, and monitoring when that particular user hits a ball into the range) and tracks that ball's movement to the ground. In a preferred aspect, the camera can even view the net, if applicable, and calculates how far the ball would have gone if it was not stopped by a safety net.
Once the system determines the distance for a particular golf ball hit from a particular user, the system notifies the user at the tee-off position by a connected liquid crystal display (LCF) at each tee-off position (note that each tee-off position has a LCD connected, for example, to the wall separating the user from another tee-off position; and those LCD displays are addressed to unique locations by the system).
In another aspect, the camera includes infrared detectors, e.g., HgCdTe-type detector elements with a cooled focal plane dewar, to decrease background noise; or microbolometer detectors, such as the type taught in U.S. Pat. No. 5,286,976 by B. Cole, and which is hereby incorporated by reference. In this manner, the tracking methods of the invention include detection and tracking at night and/or dusk, without regard to visible sunlight or artificial lighting.
In yet another aspect, the system includes a processing subsystem to determine how far a ball travels before the ball completes its journey. Specifically, this aspect includes the steps of monitoring the ball's movement during a first period of time, e.g., 1 second, and determining where the ball would land by completing the arc traveled by the ball before the ball actually travels that distance; and relaying this information to the user. This information can be updated, during flight and up until the ball lands, so that the user has a better and better determination of the ball's traveled distance. Once the ball lands, and/or comes to a stop (the system can notify the user of either occurrence, and distance, selectively), that selected distance is displayed to the user with great accuracy.
Preferably, in one aspect, frames of data are taken within a computer processing card adjacent to the camera and mounted on a pole at the far end of the driving range. The camera is adjusted to view one or more users, and the ground in front of the users to the net, so that, in effect, at least about 200 yards is viewed by the camera; and so that a golf ball hit by the viewed user can be tracked to its destination.
The frames of image data taken at the camera are stored and processed by a frame grabber at preferably high rates. On-board processing within the card enables high speed calculations at frame rates suitable to capture golf ball movements around the driving range. By way of example, if a typical user hits a golf ball 200 yards in 5 seconds (i.e., 1440 inches per second), and if each pixel's instantaneous field of view (IFOV) is on the order of a golf ball at 200 yards, then 1440 Hz frame rates will capture a golf ball at each frame and at adjacent pixels, frame to frame. When the composite image is analyzed, such high speed image capture will provide a very smooth motion curve of the golf ball's travel, making distance determination relatively easy.
However, this kind of accuracy is not really needed, in accord with the invention. A golf ball exhibits high luminance when hit with solar or artificial light. Accordingly, its signal as viewed by a visible detector will be relatively high, as compared to the background of the driving range and the users; so that, in effect, the ball is easily viewed and one to one correspondence between the pixels' IFOV and the ball is not necessary. In on

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ball tracking system and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ball tracking system and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ball tracking system and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2601042

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.