Surgery – Specula – Retractor
Reexamination Certificate
2002-02-07
2004-02-10
Philogene, Pedro (Department: 3737)
Surgery
Specula
Retractor
C600S102000
Reexamination Certificate
active
06689054
ABSTRACT:
BACKGROUND OF THE INVENTION
This application is a continuation of co-pending Application U.S. Ser. No. 09/489,725 filed on Jan. 24, 2000 which is a continuation of Application U.S. Ser. No. 08/792,151 filed on Jan. 31, 1997, now U.S. Pat. No. 6,254,535 which is a continuation in part of Application U.S. Ser. No. 08/719,354 filed on Sep. 25, 1996, now U.S. Pat. No. 6,132,370 and which is a continuation in part of Application U.S. Ser. No. 08/639,214 filed on Apr. 26, 1996.
1. Field of the Invention
This invention relates to an apparatus for stabilizing a predetermined area of the body during surgical intervention, which better enables a surgeon to perform a surgical procedure at the surgical site. In particular, the invention relates to an apparatus for stabilizing a predetermined area of the heart for performing minimally invasive coronary artery bypass grafting at the surgical site, in which the apparatus is adapted to be connected to a rib retractor, has a rotatable and pivotal joint between the handle and stabilizing device, and has a means for easily switching among different sized stabilizing devices.
2. Background Art
Atherosclerosis or coronary artery disease is among the most common and serious health problems confronting the medical profession. In the past, many different approaches at therapy have been utilized. Surgical correction of occluded or stenosed coronary arteries via bypass grafting through conventional approaches, such as the sternotomy, are probably still the most common procedure performed today, especially where multiple bypass grafts are needed.
However, interventional techniques, such as percutaneous transluminal angioplasty (PTCA), have gained popularity as the method of choice for therapy of atherosclerotic occlusions for several reasons. The transluminal approach is a minimally invasive technique which subjects the patient to less trauma and less recovery time, especially when compared to bypass grafts which utilize homologous tissue, such as saphenous vein grafts. Often the patient suffers complications at the graft donor site which are worse than the stemotomy and anastomosis.
Although PTCA procedures are often successful, complications such as restenosis or thrombosis and embolism can occur. Intravascular stents are sometimes deployed at the PTCA site to lessen the occurrence of restenosis. However, restenosed vessels often require surgical intervention for correction.
Surgical correction of restenosis, as well as conventional bypass graft surgery, require that the heart be stopped and the patient placed on a heart/lung bypass machine during the procedure. This occurs at considerable expense and risk to the patient. In an effort to reduce the expense, risk and trauma to the patient, physicians have recently turned to minimally invasive surgical approaches to the heart, such as intercostal and endoscopic access to the surgical site. In addition, utilization of alternative graft vessels, such as the internal mammary artery (IMA), have also greatly reduced the trauma to the patient and increased the efficacy of surgical therapy.
Prior to the present invention, however, attempts at performing minimally invasive bypass grafting on a beating heart were thought to be too tedious, dangerous and difficult because of the delicate nature of the surgical procedure, the lack of adequate access through a reduced surgical field, and the lack of a way to adequately stabilize and reduce movement at the graft site. Such a minimally invasive bypass grafting performed on the beating heart eliminates the expense and risk of stopping the heart and the necessity of the heart lung bypass machine and decreases patient recovery time. For single or double bypass procedures, especially where the IMA is utilized, patient trauma and recovery time is even further decreased.
SUMMARY OF THE INVENTION
The above problems of the prior art are overcome by the present invention, which provides an apparatus for stabilizing a predetermined area on a heart or other organ of a patient to enable a surgical procedure to be performed. The apparatus of the present invention comprises a bifurcated member having two prongs, an elongated handle segment, and a means for pivotally connecting the handle segment to the bifurcated member. Each prong of the bifurcated member, also known as a tine assembly, has a first section and a second section. The first section is adjacent the handle segment and terminates in the second section. The second section engages the heart or other organ on which the surgical procedure occurs.
The present invention also encompasses a means for movably mounting the handle segment to a rib retractor or other surgical device. The mounting means, which is preferably a swivel head, holds the bifurcated member at the predetermined site, thus alleviating the requirement that a person hold the handle segment.
A further aspect of the present invention is that it includes a means for rotatably and pivotally connecting the bifurcated member to the handle segment. In the preferred embodiment, a ball and socket design is used. In conjunction, the present invention comprises a means for locking the bifurcated member in a desired position relative to the handle segment when the bifurcated member is disposed on the heart of a patient. The surgeon can tighten the ball and socket to frictionally hold the assembly using a tightener located at the upper end of the handle segment, which is advantageous during a surgical procedure where space within the surgical site is limited.
Since the second section of the bifurcated member engages the heart, it is desired that the second section further comprises a means for stabilizing it from sliding on the heart. Stabilizing the apparatus on the heart is an important consideration during the surgical procedure. The present invention can encompass many different stabilizing means, including, for example, a DeBakey serrated pattern, a textured portion on at least a portion of one second section, an insert disposed on the second section having a plurality of teeth, an insert having a plurality of flexible hooks, an insert having a plurality of bristles, or even a flexible covering disposed over at least a portion of the second section. The flexible covering can be a cloth, such as cotton, or a tubular member formed from a material such as silicon.
As will be appreciated, the apparatus of the present invention can be used in surgical procedures other than heart surgery, including, for example, soft tissue procedures such as vascular thrombosis repair, intestinal resection and anastomosis and other intra-abdominal procedures, and the like.
Thus, it is an object of the invention to provide an apparatus for stabilizing a predetermined area of the heart or other organ of a patient to enable a surgeon to perform a surgical procedure at the predetermined site.
Another object of the invention is to provide an apparatus for stabilization of an area of the beating heart adjacent to a coronary artery for performing coronary artery bypass grafting.
Yet another objective of the present invention is to provide an apparatus in which the bifurcated member can both rotate and pivot relative to the handle segment to ensure the maximum adaptability for work within the surgical site. An associated objective is to use an apparatus in which the bifurcated member can be easily exchanged with another bifurcated member of a different size when necessary.
A further object of the invention is to provide an apparatus as above that is adapted for pivotal attachment to a device that provides access to the surgical site, such as a rib spreader or other retractor.
The above recited objects of the invention are not intended to so limit the used of the invention. These and other objects of the invention will be apparent to the skilled artisan based upon the following disclosure.
REFERENCES:
patent: 1798124 (1931-03-01), Hunn
patent: 2608192 (1952-08-01), Heitmeyer et. al.
patent: 4573452 (1986-03-01), Greenberg
patent: 5613937 (1997-03-01), Garrison et al.
patent: 5875782 (1999-03-01
Furnish Gregory R.
Looney Christopher S.
Bonderer David A
Dochart LLP
Philogene Pedro
Ryan John W.
Teleflex - CT Devices
LandOfFree
Ball and socket coronary stabilizer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ball and socket coronary stabilizer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ball and socket coronary stabilizer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3320416