Balanced modular pendulum mechanism

Internal-combustion engines – Oscillating piston – Toroidal cylinder

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S01800A, C123S241000

Reexamination Certificate

active

06382143

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a mechanism that may be used in different type machines. More particularly, the present invention comprises a balanced modular pendulum mechanism which may be applied to devices such as vacuum pumps, compressors, engines and blowers and which may operate either with or without lubrication, rendering a high yield while operating in a well balanced manner.
BACKGROUND OF THE INVENTION
Among the conventional rotating mechanisms presently used in compressors, the most commonly used mechanisms are those of the rotating screw type. Such rotating mechanisms have replaced alternating lubricated compressor mechanisms because they require less servicing while their size is smaller. Moreover, conventional alternating mechanisms are lubricated with mineral oil, which is a drawback due to oil carbonization within the valves, so monitoring, servicing and maintenance tasks and expenses are highly increased with such structures.
Also, rotating compressor mechanisms have a significant drawback, for they are heavy energy consumers. Thus, the energy consumption remains high when the machine works at full capacity and when it works in vacuum. Also, oil servicing and oil filter replacement are necessary during operation of the compressor which increase operating costs of such rotating compressor mechanisms.
In the past, the present inventor has developed mechanisms for engines or compressors based on a different arrangement: a toroidal cylinder and a plunger of wider diameter, but more flattened than those of a conventional type mechanism.
These novel mechanisms have been successfully used in compressors, in different types of vehicles and in engines in general. In such cases, proper functioning has resulted, consumption of energy has been reduced, pollution has been reduced, and neither constructive or arrangement problems have arisen during operation. Such a device is described in Argentinean Patent No. 207194, issued to the inventor of the present application.
However, because such a structure mechanism is a two-effect mechanism, the movable parts are heavier. Accordingly, such a mechanism may not reach high speeds. This is due to the fact that two plungers or pistons are attached to a simple pendulum member, thereby requiring a higher inertial force to be generated by the single connecting rod, bolts and crankshaft to move the structure mechanism and maintain the double plungers in operating position.
SUMMARY OF THE INVENTION
The present invention fulfills the requirements of modem technologies where there is a need for low weighted compressors and engines which provide smooth and silent operation. Also, it is desirable that such mechanisms operate at high revolutions to provide increased efficiency while reducing the size of the mechanism to reduce the costs of operation.
In order to meet these requirements, a double pendulum mechanism has been developed, in accordance with the present invention. The present invention relates to a balanced pendulum mechanism that is useful in devices such as vacuum pumps, compressors, engines and blowers. The mechanism includes a pair of toroidal shaped cylinders originating from the centerline of a central axis, with each cylinder structurally arranged to receive and cooperate with a plunger attached to a pendulum arm that is pivotally anchored to this central axis. The pendulum arms are linked to connecting rods mounted to the crankshaft to complete the pendulum mechanism which is operable either with or without lubrication.
Accordingly, the present invention contemplates that the central axis may be a single axis which pivotally anchors the pendulum arms for cooperation with the toroidal shaped cylinders. However, it is within the scope of the present invention that each toroidal shaped cylinder may have its' own associated central axis positioned within the housing block which pivotally anchors a pendulum arm for cooperation with each respective toroidal cylinder. Accordingly, a geometrical relation exists between a respective cylinder and its' respective central axis because the generation centerline axis of the cylinder coincides with it's own mounting central axis for the pendulum arm.
When the pendulum mechanism is applied to a traditional pendulum compressor, revolutions and air generation are doubled and, in some instances, is tripled. The reason for this increased efficiency is that in accordance with the present invention, the weight and volume of the components of the mechanism are reduced, the operation of the mechanism is highly balanced, and the mechanism is not subject to strong mechanical efforts due to the effect of inertia. Also, the present invention exceeds the operation of conventional rotating compressors because of low energy consumption while providing high air pressure generation. The present invention also provides increased efficiency when working with less than a full load. And, during operation, the temperature of the plunger and the cylinder is substantially reduced to provide the ecological benefit of eliminating burnt oil passing into the environment.
Because the present pendulum mechanism may operate either with or without the use of lubricants, it is especially suitable for being employed in hospitals, food factories, medicine plants, textile industries, wood industrialization, plastic elaboration plants and in many other applications. For example, it may be used in nuclear reactors and for railway purposes.
Finally, the present pendulum mechanism is modular so that many units can be arranged radially around a single crankshaft, one after the other aligned axially along the crankshaft, or several units may share the same engine block.
Finally, the various parts of the present invention may fit several applications. For example, the toroidal shaped cylinders and plungers may have different diameters and the mounting axes of the pendulum arms may or may not be coaxial. Also, the valve devices for use with the cylinder may be positioned in the head of the toroidal shaped cylinder, in the plunger or both as desired. For the sake of clarity in the present description, the word cylinder does not refer to a specific geometric shape, but to the part of an engine where the combustion of a high carbon mixture occurs or where either a vapor or other fluid enters by pressure so as to energize the plunger or piston member that makes the drive shaft move by means of the connecting rod. In the case of a compressor, reference is made to the chamber where the plunger operates to cause compression.


REFERENCES:
patent: 1256647 (1918-02-01), Baudot
patent: 2416846 (1947-03-01), Richter
patent: 2651206 (1953-09-01), Veille
patent: 3910239 (1975-10-01), James
patent: 207194 (1976-09-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Balanced modular pendulum mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Balanced modular pendulum mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Balanced modular pendulum mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2840097

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.