Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai
Reexamination Certificate
2000-02-11
2001-07-31
Sayala, Chhaya D. (Department: 1761)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Peptide containing doai
C514S021800, C530S350000
Reexamination Certificate
active
06268345
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to the solubilization and stabilization of bactericidal/permeability-increasing protein (BPI) and biologically active polypeptide fragments, analogs and variants thereof. More particularly, the invention provides compositions of BPI and such BPI-related polypeptides with lipids and, particularly, lipid carrier substances such as phospholipids, liposomes and nonionic detergents as well as compositions with poloxamer surfactants. Also provided are improved pharmaceutical compositions for use as parenteral drugs.
Recent advances in the development of genetic engineering technology have made a wide variety of biologically active polypeptides available in sufficiently large quantities for use as drugs. Recombinant BPI and fragments, analogs and variants of BPI, like other polypeptides, can be subject to particulate formation and loss of biological activity by a variety of chemical and physical means including denaturation due to heating or freezing and exposure to extreme pH or other chemical degradation. Particulate formation and loss of biological activity can occur as a result of physical agitation and interactions of polypeptide molecules in solution and at the liquid-air interfaces during the process of isolation and upon storage within vials. It is believed that the polypeptide molecules adsorb to an air-liquid interface, unfolding to present hydrophobic groups to air with the hydrophilic groups immersed in the aqueous phase. Once so positioned at the surface, the polypeptide molecules are susceptible to aggregation, particle formation and precipitation. It is also believed that further conformational changes can occur in polypeptides adsorbed to air-liquid and solid-liquid interfaces during compression-extension of the interfaces such as occurs from agitation during compression-extension of the interfaces such as occurs from agitation during transportation or otherwise. Such agitation can cause the protein to entangle, aggregate, form particles and ultimately precipitate with other adsorbed proteins. Particle formation due to surface denaturation can be somewhat controlled by appropriate selection of the dimensions of storage vials and by minimizing the air volume (headspace) in those vials. In this regard, partially filled containers represent the worst case for vibration induced precipitation.
Particle formation has traditionally been controlled by incorporation of surfactants into the protein-containing composition in order to lower the surface tension at the solution-air interface. Classic stabilization of pharmaceuticals by surfactants or emulsifiers (e.g., lipid carriers) has focused on the amphipathic nature of molecular groups containing both hydrophilic and hydrophobic properties within the surfactant molecule.
Wang et al., J. Parenteral Sci. & Technol., 42, supp. 25, pp. S4-S26 (1988) review the use of surfactants as stabilizers for proteins and peptides in parenteral drug formulations. Specifically, polysorbate 20 and polysorbate 80 are cited as stabilizers for pharmaceutical compositions including those containing interleukin-2, tissue plasminogen activator and tumor necrosis factor. Wang et al. further disclose the use of BRIJ surfactants for the stabilization of pharmaceutical compositions comprising uricase and insulin and the use of an otherwise uncharacterized poloxamer surfactant for the stabilization of an insulin composition. Of interest to the present invention is the work related to use of polysorbate 80 (TWEEN 80), poloxamer-188 (PLURONIC F-68) and steareth-100 (BRIJ 700) for stabilization of antibody-based product formulations as described in Levine, et al., J. Parenteral Sci. Technol., 45, 3, 160-165 (1991). A monoclonal antibody product, OKT3 (Ortho Pharmaceutical Corp.) approved by U.S. regulatory authorities for human use is formulated with polysorbate 80.
Although a variety of surfactants or emulsifiers have been used to solubilize/stabilize polypeptide compositions, regulatory requirements limit the types and specific identities of surfactants that can be incorporated into parenteral compositions for injection into the human body. Generally accepted surfactants having a history of use and listed in the U.S. Pharmacopoeia XXII include polysorbate (polyoxyethylene sorbitol ester) and poloxamer (polyoxypropylene-polyoxyethylene block copolymer) polymers. Polysorbate 80 has been approved in parenteral solutions for over 20 years, but is rarely used in concentrations greater than 0.1% in solution volumes of 100 mL or more. For example, Krantz et al., “Sugar Alcohols - XXVIII. Toxicologic, Pharmacodynamic and Clinical Observations on TWEEN 80,” Bull. of the School of Med., U. of Md., 36, 48 (1951), identifies the onset of hemolysis in the dog for a polysorbate concentration of 0.1% at 90 minutes. In addition, neonatal deaths have been associated with the use of polysorbate 80 at concentrations of greater than 1%. With respect to poloxamer surfactants, the highest safe concentration for poloxamer 188 in approved parenteral solutions was 2.7% in an approved parenteral use blood substitute perfluorochemical solution where it was diluted as much as 10 fold in the bloodstream. Thus, certain concentrations of surfactants may pose increased risk of toxic effects, earlier onset of hemolysis, and observed changes in both neutrophils and platelets, which are involved in blood complement activation.
BPI and fragments, analogs and variants of BPI are susceptible to particulate formation and loss of biological activity. Nevertheless, the art has failed to show means for the stabilization of such BPI polypeptides or for the solubilization of BPI polypeptide aggregates, particles or precipitates. Accordingly, there exists a need in the art for BPI compositions providing improved protein solubilization and stability. Moreover, there exists a need in the art for pharmaceutical compositions comprising BPI or biologically active fragments, analogs or variants thereof which comprise only concentrations of components which are regarded as safe and are included in parenterals approved by regulatory authorities for commercial use.
SUMMARY OF THE INVENTION
The present invention provides compositions comprising a bactericidal/permeability-increasing protein (BPI) or a biologically active polypeptide fragment, analog or variant thereof (produced by recombinant or nonrecombinant means) and a lipid carrier, particularly a nonionic detergent lipid carrier, where the BPI polypeptide is solubilized in the lipid carrier. Useful nonionic detergent lipid carriers include octoxynol-9 (TRITON X-100, Rohm & Haas), polysorbate 80 (TWEEN 80, ICI Americas, Inc., Wilmington Del.), polysorbate 20 (TWEEN 20, ICI Americas, Inc.) and laureth-4 (BRIJ 30, ICI Americas, Inc.). The nonionic detergent lipid carriers, such as polysorbate 80 solubilize/stabilize BPI polypeptides by altering (generally lowering) the surface tension of the polypeptide solution. The invention also provides a method of solubilizing/stabilizing such BPI polypeptides by contacting the polypeptide with a lipid carrier under conditions such that the polypeptide is solubilized.
The invention additionally relates to the discovery that a poloxamer surfactant is particularly useful for the solubilization/stabilization of compositions comprising an aqueous solution of BPI protein or biologically active fragments, analogs, or variants of BPI protein. The invention provides a method of solubilizing/stabilizing such polypeptides without altering the surface tension by contacting the polypeptide solution with a poloxamer surfactant, for example, poloxamer 188. The poloxamer surfactant component is preferably present in a concentration of from about 0.01% to about 1% by weight with a concentration of 0.1% to 0.2% by weight being preferred to stabilize protein solutions comprising less than or equal to 2 mg/mL.
The invention further relates to compositions comprising a bactericidal/permeability-increasing protein (BPI) or a biologically active polypeptide fragment, analog or vari
Marshall O'Toole Gerstein Murray & Borun
Sayala Chhaya D.
Xoma Corporation
LandOfFree
Bactericidal/permeability-increasing protein (BPI) compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bactericidal/permeability-increasing protein (BPI) compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bactericidal/permeability-increasing protein (BPI) compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2497332