Bacterial plasmin receptors as fibrinolytic agents

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

536 237, 424 9464, 4351723, 530350, 53038825, 530381, 530825, C07H 1700

Patent

active

053289960

ABSTRACT:
The subject invention concerns novel methods and compositions for thrombolytic therapy. More specifically, a receptor with high affinity for plasmin has been characterized, purified, cloned, and expressed. This receptor can be used in combination therapies where it is administered prior to, concurrently with, or after a plasminogen activator. Also, this receptor can be bound to plasmin and administered to humans or animals in need of fibrinolytic activity. Additionally, the invention pertains to a novel immobilized form of plasmin which advantageously accumulates at the point where antifibrinolytic activity is needed.

REFERENCES:
Lottenberg et al J. of Bact. 174(16):5204, 1992.
Pancholi, V., and V. A. Fischetti (1992) "A Novel Multifunctional Surface Protein (MF6) of group A Streptococci" Abstract of the General Meeting Abstract No. B-252 p. 68.
Blobel, Gunter (1980) "Intracellular protein topogenesis" Proc. Natl. Acad. Sci. USA 77(3):1496-1500.
Ferguson, Michael A. J., and Alan F. Williams (1988) "Cell-Surface Anchoring of Proteins Via Glycosyl-Phosphatidylinositol Structures" Ann. Rev. Biochem. 57:285-320.
Hekman, W. E., D. T. Dennis, and J. A. Miernyk (1990) "Secretion of Ricinus communis glyceraldehyde-3-phosphate dehydrogenase by Escherichia coli" Molecular Microbiology 4(8):1363-1369.
Allen, Robert W., Kathleen A. Trach, and James A. Hoch (1987) "Identification of the 37-kDa Protein Displaying a Variable Interaction with the Erythroid Cell Membrane as Glyceraldehyde-3-phosphate Dehydrogenase" The Journal of Biological Chemistry 262(2):649-653.
Goudot-Crozel, Veronica, Daniele Caillol, Malek Djabali, and Alan J. Dessein (1989) "The Major Parasite Surface Antigen Associated With Human Resistance to Schistosomiasis is a 37-kD Glyceraldehyde-3P-Dehydrogenase" J. Exp. Med. 170:2065-2080.
Allen, Robert W., and Beverly A. Hoover (1985) "Characterization of the Processed Form of a Ubiquitous Protein Displaying a Variable Membrane Organization in Erythroid Cells" Blood 65(5):1048-1055.
Michels, Paul A. M., M. Marchand, L. Kohl, S. Albert, R. K. Wierenga, and F. R. Opperdoes (1991) "The cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship" Eur. J. Biochem. 198:421-428.
Tso, J. Yun, Xiao-Hong Sun, Teh-hui Kao, Kimberly S. Reece, and Ray Wu (1985) "Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase DNAs: genomic complexity and molecular evolution of the gene" Nucleic Acids Research 13(7):2485-2502.
Lameir, Anne-Marie, A. M. Loiseau, D. A. Kuntz, F. M. Vellieux, Paul A. M. Michels, and F. R. Opperdoes (1991) "They cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei: Kinetic properties and comparison with homologous enzymes" Eur. J. Biochem. 198:429-435.
Piechaczyk, M., J. M. Blanchard, S. Riaad-El Sabouty, C. Dani, L. Marty, and P. Jeanteur (1984) "Unusual abundance of vertebrate 3-phosphate dehydrogenase pseudogenes" Nature 312(29):469-471.
Alefounder, P. R., and R. N. Perham (1989) "Identification, molecular cloning a sequence analysis of a gene cluster encoding the Class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli" Molecular Microbiology 3(6):723-732.
Holland, Janice P., Laura Labieniec, Candace Swimmer, and Michael J. Holland (1983) "Homologous Nucleotide Sequences at the 5' Termini of Messenger PNAs Synthesized from the Yeast Enolase and Glyceraldehyde-3-phosphate Dehydrogenase Gene Families" The Journal of Biological Chemistry 258(8):5291-5299.
Liotta L. A., R. H. Goldfarb, R. Brundage, G. P. Siegal, V. Terranova, and S. Garbisa (1981) "Effect of Plasminogen Activator (Urokinase), Plasmin, and Thrombin on Glycoprotein and Collagenous Components of Basement Membrane" Cancer Research 41:4629-4636.
Broeseker, Tim A., Michael D. P. Boyle, and Richard Lottenberg (1988) "Characterization of the interaction of human plasmin with its specific receptor on a group A streptococcus" Microbial Pathogenesis 5:19-27.
DesJardin, Lucy E., Michael D. P. Boyle, and Richard Lottenberg (1989) "Group A Streptococci Bind Human Plasmid But Not Other Structurally Related Proteins" Thrombosis Research 55:187-193.
Lottenberg, Richard, Christopher C. Broder, and Michael D. P. Boyle (1987) "Identification of a Specific Receptor for Plasmin on a Group A Streptococcus" Infection and Immunity 55(8):1914-1928.
Bisno, Alan L. (1991) "Group A Streptococcal Infections and Acute Rheumatic Fever" New England Journal of Medicine 325(11):783-793.
Siefring, Gerald E., Jr., and Francis J. Castellino (1976) "Interaction of Streptokinase with Plasminogen: Isolation and Characterization of a Streptokinase Degradation Product" The Journal of Biological Chemistry 251(13):3913-3920.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bacterial plasmin receptors as fibrinolytic agents does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bacterial plasmin receptors as fibrinolytic agents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bacterial plasmin receptors as fibrinolytic agents will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-397379

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.