Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor
Reexamination Certificate
2006-01-24
2006-01-24
McKelvey, Terry (Department: 1636)
Chemistry: molecular biology and microbiology
Micro-organism, per se ; compositions thereof; proces of...
Bacteria or actinomycetales; media therefor
Reexamination Certificate
active
06989265
ABSTRACT:
The present invention provides a bacterium having a genome that is genetically engineered to be at least 2 to 14% smaller than the genome of its native parent strain. A bacterium with a smaller genome can produce a commercial product more efficiently. The present invention also provides methods for deleting genes and other DNA sequences from a bacterial genome. The methods provide precise deletions and seldom introduces mutations to the genomic DNA sequences around the deletion sites. Thus, the methods can be used to generate a series of deletions in a bacterium without increasing the possibility of undesired homologous recombination within the genome. In addition, some of the methods provided by the present invention can also be used for replacing a region of a bacterial genome with a desired DNA sequence.
REFERENCES:
patent: 5578464 (1996-11-01), Lunn et al.
patent: 5747662 (1998-05-01), Simmons et al.
patent: 5824502 (1998-10-01), Honjo et al.
patent: 5962327 (1999-10-01), Dujon et al.
patent: 6015709 (2000-01-01), Natesan
patent: 6022952 (2000-02-01), Weiner et al.
patent: 6117680 (2000-09-01), Natesan et al.
patent: 6238924 (2001-05-01), Dujon et al.
patent: 6335178 (2002-01-01), Weiner et al.
patent: 6372476 (2002-04-01), Belguith et al.
patent: 6410273 (2002-06-01), Crouzet et al.
patent: 6509156 (2003-01-01), Stewart et al.
patent: 0177343 (1986-04-01), None
patent: WO 96/14408 (1996-05-01), None
patent: WO 02/14495 (2002-02-01), None
Smalley et al., Trends in Microbiology, vol. 11, No. 1, pp. 6-8, 2003.
Balbas (2001). Understanding the art of producing protein and non-protein molecules inE. coli.Molec Biotechnol 19: 251-267.
Baneyx (1999). Recombinant protein expression inE. coli. Current Opinion in Biotech 10: 411-421.
Berry et al. (2002). Application of metabolic engineering to improve both production and use of biotech indigo. J Indust Micro & Biotech 22: 127-133.
Blattner et al. (1997). The complete genome sequence ofEscherichia coliK 12. Science 277:1453-74.
Blaudeck et al. (2001). Specificity of single peptide recognition in TAT-dependent bacterial protein translocation. J. Bacteriology 183:604-610.
Court et al. (2002). Genetic engineering using homologous recombination. Annu. Rev. Genet. 36: 361-88.
Danese et al. (1998). Targeting and assembly of periplasmic and outer-membrane proteins inEscherichia coli. Annu. Rev. Genet. 32:59-94.
Datsenko et al (2000). One-step inactivation of chromosomal genes inEscherichia coliK-12 using PCR products. Proc. Natl. Acad. Sci. 97:6640-6649.
Degryse (1995). Evaluation ofEscherichia coli recBCsbcBC mutants for cloning by recombination in vivo. J. Biotechnology 39: 181-187.
DeLisa et al. (2001). Quorum sensing via AI-2 commumicates the metabolic burden associated with heterologous protein production inE. coli. Biotech Bioeng 75(4): 439-450.
Fekkes et al. (1999). Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 63:161-193.
Gill et al. (2000). A comparative study of global stress gene regulation in response to overexpression of recombinant proteins inE.coli. Metabolic Engineering 2: 178-189.
Hanahan et al. (1983). Studies on transformation ofEscherichia coliwith plasmids. J. Mol. Biol. 166(4):557-580.
Hannig (1998). Strategies for optimizing heterologous protein expression inEscherichia coli. Trends Biotechnol. 16(2):54-60.
Hayashi et al (2001). Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Research 8: 11-22.
Hockney (1994). Recent developments in heterologous protein production inEscherichia coli. Trends Biotechnol. 12(11):456-632.
Hynds et al. (1998). The sec-independent twin-arginine translocation system can transport both tightly folded and malfolded proteins across the thylakoid membrane. J. Biol. Chem. 273:34868-34874.
Kitamura (1995). DNA sequence changes in mutations in the ton B gene on the chromosome ofEscherichia coliK-12: insertion elements dominate the spontaneous spectra. Jpn J Genet 70: 35-46.
Kolisnychenko et al. (2002). Engineering a reducedEscherichia coligenome. Genome Research 12:640-647.
Koob et al.. Minimizing the genome ofEscherichia coli. Ann. N.Y. Acad. Science.
Koonin (2000). How many genes can make a cell: The minimal-gene-set concept. Ann Rev Genom Hum Genet 1: 99-116.
Lee (1996). High cell-density culture ofEscherichia coli. TIBTECH 14:98-103.
Murphy (1998). Use of bacteriophage λ recombination functions to promote gene replacement inEscherichia coli. J. Bacteriol. 180: 2063-2071.
Muyrers et al. (1999). Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucl. Acids. Res. 27: 1555-1557.
Neidhardt et al. (1974). Culture medium for Enterobacteria. J. Bacteriol. 119:736-747.
Oliner et al. (1993). In vivo cloning of PCR products inE. coli. Nucleic Acids Res. 2(22): 5192-7.
Otto et al. (2002). Surface sensing and adhesion ofE.colicontrolled by the Cpx-signaling pathway. Proc. Nat. Acad. Sci. US 99(4): 2287-2292.
Perna et al. (2001). Genome sequence of enterohaemorrhagicEscherichia coliO157:H7. Nature 409:529-533.
Perna et al. (2002). The genomes ofEscherichia coliK-12 and pathogenicE. coli. PathogenicE.coliParadigm for Bacterial pathogenesis, M.S. Donnenberg, Editor. Academic Press.
Pfeifer et al. (2001). Biosynthesis of complex polyketides in a metabolically engineered strain ofE. coli. 291: 1790-1792.
Posfai et al. (1997). Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of theEscherichia coliO157:H7 genome. J. Bacteriol. 179: 4426-4428.
Posfai et al. (1999). Markerless gene replacement inEscherichia colistimulated by a double-strand break in the chromosome. Nucl. Acids Res. 27:4409-4415.
Pugsley (1993). The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57:50-108.
Reisenberg (1991). High cell density cultivation ofE.coliat controlled specific growth rate. J. Biotech 20(1): 17-27.
Ritz et al. (2001). Roles of thiol redox pathways in bacteria. Annu Rev Microbiol 55: 21-48.
Santini et al. (1998). A novel sec-independent periplasmic protein translocation pathway inEscherichia coli. Embo J. 17:101-112.
Sargent et al. (1998). Overlapping functions of components of a bacterial Sec-independent protein export pathway. Embo J. 17:3640-50.
Selinger et al. (2000). RNA expression analysis using a 30 base pair resolutionEscherichia coligenome array. Nat Biotechnol 18(12): 1262-1268.
Simmons et al. (1996). Translational level is a critical factor for secretion of heterologous proteins inE. coli. Nature 14: 629-634.
Sing-Gasson et al. (1999). Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol. 17(10): 974 978.
Swartz (2001). Adavances inE. coliproduction of therapeutic proteins. Curr Opinion in Biotech 12: 195-201.
Thomas et al. (2001). Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway inEscherichia coli. Mol. Micro. 39(1):47-53.
Venkatesan et al. (2001). Complete DNA Sequence and analysis of the large virulence plasmid of Shigella flexneri. Infection of Immunity 3271-3285.
Weiner et al. (1998). A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93:93-101.
Welch et al. (2002). Extensive mosaic structure revealed by the complete genome sequence of uropathogenicEscherichia coli. Proc. Natl. Acad. Sci. USA 99(26): 17020-17024.
Yu et al. (2000). An efficient recombination system for chromosome engineering inEscherichia coli. Proc. Natl. Acad. Sci. USA 97: 5978-5983.
Yu et al. (2002). Minimization of theEscherichia coligenome using a Tn5-targeted Cre/LoxP excision system. Nature Biotech. 20:1018-1023.
Zhang et al. (1998). A new logic for DNA engineering using recombination inEscherichia coli. Nature Genetics 20: 123-128.
Zhang et al. (2000). DNA cloning by homologous recombination inEscherichia coli. Nature Biotechnology 18: 1314-1317.
Zhang et al. (2003). Phage annealing proteins promote olig
Blattner Frederick R.
Glasner Jeremy D.
Herring Christopher D.
Plunkett, III Guy
Posfai Gyorgy
Fulbright & Jaworski LLP
McKelvey Terry
Vogel Nancy
Wisconsin Alumni Research Foundation
LandOfFree
Bacteria with reduced genome does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bacteria with reduced genome, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bacteria with reduced genome will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3583551