Fluid handling – Systems – Multiple inlet with multiple outlet
Reexamination Certificate
2001-03-19
2003-05-27
Lee, Kevin (Department: 3753)
Fluid handling
Systems
Multiple inlet with multiple outlet
C137S595000, C137S625170
Reexamination Certificate
active
06568428
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed toward valves and, more particularly, toward interconnectable valves for use in controlling the flow of fluids within pipelines and other conduits and for changing flow paths of the fluids.
BACKGROUND OF THE INVENTION
A variety of different valves have been developed for controlling fluid flow through pipelines. Most valves, regardless of type, include a housing member that operably supports a flow control member therein. The housing typically has two or more flow ports that are constructed for attachment to corresponding portions of pipelines or other conduits. Some of the ports may be provided with threaded connections, while other may utilize a “slip fit” connection wherein a section of pipeline is slidably received in a socket formed in the valve housing. The pipe is then typically retained within the socket by an appropriate attachment medium or adhesive. For example, the pipe may be affixed to the socket by welding, soldering, gluing, and the like.
The flow control characteristics afforded by a valve are generally dependent on the type of flow control member employed by the valve and the configuration of the flow ports. In many pipeline applications, it is desirable to utilize valves that divert fluid flow from one port to another. In those instances, diverting valves are typically employed. For example, in one application, water flow from a water heater may be diverted to either a pool or a spa by way of a diverting valve. In another application, a diverting valve may be utilized in connection with a filtering system for a pool or other fluid source. Water from a pool may be diverted to either a filter input or output port for either filtering the pool water or backwashing the filter.
A number of differently configured diverting valves exist for diverting fluid flow between ports. One type of diverting valve utilizes a “ball” or “disc” that essentially fills the core of the valve body except for a flow passage provided through the ball or disc. The ball or disc may be rotatably or slidably supported within the valve body and is adapted to sealingly engage the seats adjacent to the ports of the valve such that flow occurs only through the ports that are aligned with the flow passage. The other ports are either sealed off by the ball or disc, or sealed off by another valve member operating in conjunction with the ball or disc. Another type of diverting valve utilizes a diverting member, or gate, that sealingly engages a seat adjacent to a port so as to prevent fluid flow through that particular port. The diverting member may be either rotatably or slidably supported within the valve body such that the diverting member may be rotated or slid so as to prevent fluid flow through a port when in one position (sealingly engaging the port seat) and permit fluid flow through that port in another position (moved away from the port seat). Thus, ball, disc, and diverter-type valves may be utilized to divert fluid flow by rotating or sliding the ball, disc or diverting member to seal the appropriate port or ports through which fluid flow is not desired, while generally permitting fluid flow through the other ports.
In those applications where the diverting valve is to be used for directing fluid to and from a backwashable filter, the construction of such valves typically becomes complex. Diverting valves designed for these applications find particular utility for use in connection with a swimming pool filtering system. In one position (filter position), the diverting valve permits water from the swimming pool to pass through the filter, where it is filtered via conventional filtering media, and flow back into the swimming pool. In another position (backwash position), the diverting valve directs water from the swimming pool through the filter in an opposite direction to thereby backwash the filtering media therein. The diverting valve then directs the backwashed water, containing contaminants backflushed from the filtering media, to a drain.
Multiport valves and slide valves are two common valve types utilized in such backwashing applications. However, both multiport and slide valves are typically expensive to manufacture due to the complexities of their construction, and tend to be difficult to actuate between the filter and backwash positions as a result of their internal configurations. Further, certain of the internal parts in these multiport and slide valves tend to wear out quickly, and thus require frequent replacement.
In other applications, it is desirable to utilize “shut off” valves that selectively permit or prevent fluid flow through the valve. Ball, disc and diverter-type valves have also been configured to serve as shut off valves.
Depending upon the particular application, at times it may be desirable to utilize valves with different numbers of ports and/or different port configurations. For example, in certain pipeline arrangements, it may be desirable to have a valve configured with only two ports. Two-port shut off valves are commonly used to selectively permit or prevent fluid flow from a first conduit to a second conduit. In other pipeline applications, it may be desirable to have a valve configured with three ports. In a three-port valve, fluid flow from a first conduit may be selectively routed to either a second conduit or a third conduit by properly orienting a ball, disc, or diverting member supported within the valve housing. In still other pipeline applications, it may be desirable to have a valve configured with four ports. A four-port diverting valve may be utilized to permit fluid flow from a first conduit to a second conduit in a first position, and permit fluid flow from a third conduit to a fourth conduit in a second position, while prohibiting fluid flow between the other two conduits in each position.
It may also be useful to interconnect multiple valve bodies together into a single “stacked valve” in certain pipeline applications. In those applications, the valve bodies are typically coupled, or “stacked”, perpendicularly to the direction of fluid flow. In certain stacked valve arrangements, it may be desirable for the flow control member (ball, disc, diverting member, etc.) of each valve to be interconnected and commonly actuatable. Thus, multiple sources of fluid flow may be diverted and/or shut off simultaneously.
While such valves can effectively divert or shut off fluid flow through a pipeline, conventional stacked valve designs have various shortcomings. Certain conventional stacked valves permit the valve bodies and flow control members to be rotated in relationship to one another. Stacked valves of this type, however, typically have no separator between the valve bodies or the flow control members, and require that a weld, which holds the valve bodies together, be removed in order to accomplish the rotation. Of course, after rotation, the valve bodies must be re-welded to reconnect them into a single unit. Such assembly and disassembly procedure are costly and time consuming, which, in addition to increasing the operational costs involved, can lead to undesirable downtime of the piping system. In other conventional stacked valves, a spring detent must be modified in order to properly locate the plugs of the valve when the bodies are rotated. This also can result in undesirable downtime depending upon the difficulty in such modification.
It will appreciated that while interconnecting valves can make field installation more efficient, by allowing preconfiguration of what would have been multiple parts in a conventional system, changes are sometimes required to meet varying filed conditions. Such field changes to conventional stacked or interconnected valves are, however, typically time consuming and costly in the form of labor expenses and production downtime.
Also, in many pipeline applications, to obtain the desired flow control capabilities, it may be necessary to provide fluid flow control from one valve to another. Flow between valves has previously been accomplished by providing
Maskell Bruce W.
Pecci Gene L.
Buchanan Ingersoll P.C.
Laars, Inc.
Lee Kevin
LandOfFree
Backwash valve does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Backwash valve, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Backwash valve will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3037591