Backscatter interrogators, communication systems and...

Pulse or digital communications – Transceivers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S130000

Reexamination Certificate

active

06459726

ABSTRACT:

TECHNICAL FIELD
The present invention relates to backscatter interrogators, communication systems and backscatter communication methods.
BACKGROUND OF THE INVENTION
Backscatter communication systems are known in the art. In a backscatter system, one transponder, such as an interrogator, sends out a command to a remote communications device. After the interrogator transmits the command, and is expecting a response, the interrogator switches to a CW mode (continuous wave mode). In the continuous wave mode, the interrogator does not transmit any information. Instead, the interrogator just transmits radiation at a certain frequency. In other words, the signal transmitted by the interrogator is not modulated. After a remote communications device receives a command from the interrogator, the remote communications device processes the command. The remote communications device of the backscatter system modulates the continuous wave by switching between absorbing RF radiation and reflecting RF radiation. For example, the remote communications device alternately reflects or does not reflect the signal from the interrogator to send its reply. Two halves of a dipole antenna can be either shorted together or isolated from each other to modulate the continuous wave.
One example of a backscatter system is described in commonly assigned U.S. patent application Ser. No. 08/705,043, filed Aug. 29, 1996, and incorporated herein by reference. Another example of a backscatter system is described in U.S. Pat. No. 5,649,296 to MacLellan et al. which is also incorporated herein by reference.
One application for backscatter communications is in wireless electronic identification systems, such as those including radio frequency identification devices. Of course, other applications for backscatter communications exist as well. Most presently available radio frequency identification devices utilize a magnetic coupling system. An identification device is usually provided with a unique identification code in order to distinguish between a number of different devices. Typically, the, devices are entirely passive (have no power supply), which results in a small and portable package. However, such identification systems are only capable of operation over a relatively short range, limited by the size of a magnetic field used to supply power to the devices and to communicate with the devices.
Another wireless electronic identification system utilizes a large, board level, active transponder device affixed to an object to be monitored which receives a signal from an interrogator. The device receives the signal, then generates and transmits a responsive signal. The interrogation signal and the responsive signal are typically radio-frequency (RF) signals produced by an RF transmitter circuit. Because active devices have their own power sources. The active devices do not need to be in close proximity to an interrogator or reader to receive power via magnetic coupling. Therefore, active transponder devices tend to be more suitable for applications requiring tracking of objects that may not be in close proximity to the interrogator, such as a railway car.
Spread spectrum modulation techniques are known in the art. Utilization of spread spectrum modulation provides distinct advantages in some communication applications. For example, some spread spectrum modulation techniques enable desired signals to be distinguished from other signals (e.g., radar, microwave ovens, etc.) operating at approximately the same frequencies.
Federal Communication Commission (FCC) regulations require that spread spectrum systems meet various requirements. For example; spread spectrum systems operating in the 2.4-2.485 GHz band should comply with FCC rule 15.247 which states, in relevant part, that the power spectral density cannot be more than +8 dBm in any given 3 kHz band. Further, the maximum power output is 1 Watt into a 6 dBi gain antenna. The minimum 6 dB bandwidth for a direct sequence spread spectrum is 500 kHz. In addition, the energy within restricted bands of 0-2.390 GHz and 2.4835-2.5 GHz should be lower than 500 uV/m at three meters. Communication systems operating within this specified band should be designed with regard to these regulations.
Amplitude modulation (AM) communication techniques enable communications with the use of relatively straightforward detectors. Typically, such AM detectors can be efficiently implemented with the utilization of relatively few components. However, drawbacks exist with the utilization of amplitude modulation techniques. For example, approximately half the total power of AM communications resides within the carrier. This limits the power which can be used for communicating data if AM modulation and spread spectrum techniques are utilized within the above specified frequency band.
Therefore, there exists a need to provide communication systems which comply with radio frequency regulations while also providing robust communications.
SUMMARY OF THE INVENTION
The present invention includes backscatter interrogators, communication systems and backscatter communication methods.
One aspect of the invention provides a backscatter interrogator. The backscatter interrogator includes a data path configured to communicate a data signal and a signal generator configured to generate a carrier signal. The carrier signal comprises a microwave signal in preferred embodiments. The interrogator also provides a modulator coupled with the data path and the signal generator. The modulator is configured to spread the data signal to define a spread data signal and amplitude modulate the carrier signal using the spread data signal. The modulator is further configured to phase modulate the carrier signal to reduce the power within the carrier signal.
A second aspect of the present invention provides a backscatter interrogator including a data path configured to communicate a data signal and a signal generator configured to output a microwave carrier signal. The backscatter interrogator further includes a modulator coupled with the data path and the signal generator. One configuration of the modulator is operable to spread the data signal and selectively invert the spread data signal. The modulator is further configured to band limit the inverted spread data signal and modulate the carrier signal using the band limited data signal.
Another aspect of the present invention provides a backscatter communication system including an interrogator and an electronic communication device. The interrogator is configured to spread a data signal. The interrogator is further configured to amplitude modulate a carrier signal using the data signal and phase modulate the carrier signal using the data signal. The interrogator is arranged to output the amplitude modulated and phase modulated carrier signal. The electronic communication device is configured to output a reply signal responsive to reception of the amplitude modulated and phase modulated carrier signal.
Another aspect of the invention provides a backscatter communication method including the steps of providing a data signal and providing a carrier signal. This method also includes spreading the data signal, amplitude modulating the carrier signal using the spread data signal, and phase modulating the carrier signal. The amplitude modulated and phase modulated carrier signal is thereafter communicated.
Another aspect of the invention provides a method of communication in a backscatter system including an interrogator and a communication device. The method includes providing a data signal, providing a carrier signal and spreading the data signal. The method also includes modulating the carrier signal using the spread data signal, communicating the modulated carrier signal, and suppressing the carrier signal during the communicating.
Yet another aspect of the invention provides a backscatter communication method including the steps of providing a data signal and a carrier signal. The invention also includes spreading the data signal, selectively inverting the spread data

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Backscatter interrogators, communication systems and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Backscatter interrogators, communication systems and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Backscatter interrogators, communication systems and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2929887

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.