Azlactone-functional hydrophilic coatings and hydrogels

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S326800, C428S361000, C428S370000, C428S403000, C428S411100

Reexamination Certificate

active

06794458

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to porous, hydrogel coatings useful for the immobilization of biologically active molecules and, particularly, to crosslinked, azlactone-functional hydrogel coatings that are useful for the preparation of DNA and protein arrays, diagnostic devices and materials for the separation of biological species. More particularly, this invention relates to porous hydrophilic, crosslinked, azlactone-functional coatings and gels.
BACKGROUND
Coatings derived from copolymers of polymerizable azlactones and olefinically unsaturated monomers are known. Such coatings are derived, in general, from rigid, high glass transition temperature (T
g
), hydrophobic copolymers. Crosslinking is accomplished by dispersing or dissolving the azlactone copolymer with a crosslinking agent, generally in an approximately stoichiometric amount to the azlactone, in a volatile organic liquid, applying the mixture to a substrate, then allowing the coating to crosslink via azlactone ring-opening reactions with the crosslinking agent. Suitable crosslinkers are polyols and polyamines. Polyamines, such as ethylene diamine, react with azlactones at room temperature, thereby forming crosslinks. Because of the rapid reaction between azlactones and primary amines, incorporation of a ketone solvent in the coating mixture is desirable. Polyols react much slower with azlactones and generally require a catalyst, such as a strongly acidic or basic catalyst, to promote crosslinking.
Various coatings derived from azlactone copolymers are known. For example, known coatings include copolymers of 2-alkenylazlactones with acrylic acid esters and copolymerizable vinylidene compounds having at least one hydroxyl group that crosslink on drying or mild heating. Such polymers crosslink by reaction of the hydroxyl groups on one chain of the polymer with azlactone groups on other chains. In general, an acidic or basic catalyst is again needed to facilitate the crosslinking reaction. Coatings derived from azlactone copolymers that are crosslinkable by exposure to radiation are useful in imaging applications. Uncrosslinked azlactone copolymers may be used to coat a variety of substrates. These coated substrates can be used for the immobilization of functional materials, including biologically active species such as proteins. Crosslinked azlactone-functional moieties may be included in a coating over the surfaces of chemically reactive, porous supports. These reactive supports can, in turn, be reacted with biologically active materials to produce adduct supports.
While there are a variety of methods for producing coatings derived from azlactone-functional materials, some of which provide azlactone-functional coatings useful for the immobilization of other species, there remains a need for additional or improved methods for providing coated materials for use in the immobilization of biologically active materials.
SUMMARY
This invention relates to the preparation of reactive hydrophilic coatings and hydrogels that can be applied to various substrates for the purpose of covalently attaching a functional material to the substrate. In particular, the invention provides a crosslinked hydrogel for coating a substrate comprising at least one azlactone-functional copolymer comprising a plurality of azlactone moieties, a plurality of azlactone functional groups, and at least one comonomer, and at least one crosslinker comprising a first moiety and a second moiety, wherein the first moiety of a first crosslinker is covalently bound to a first azlactone moiety and the second moiety of the first crosslinker is covalently bound to a second azlactone moiety or a second crosslinker.
In some embodiments of the crosslinked hydrogel of the present invention, the second moiety of the first crosslinker is covalently bound to a second azlactone moiety. In such embodiments, the first crosslinker may be a primary polyamine, a polyether polyamine, a compound containing both a primary and a secondary amine, or any other suitable crosslinker. In other embodiments, the second moiety of the first crosslinker is covalently bound to a second crosslinker molecule. In such embodiments, the first crosslinker may be bound to a second crosslinker molecule having the same chemical structure as the first crosslinker. Alternatively, the first crosslinker may be bound to a second crosslinker having a different chemical structure than the first crosslinker. In either embodiment described above, the first crosslinker, the second crosslinker, or both may be a heterobifunctional crosslinker such as an aminoalkylalkoxysilane.
In some embodiments of the present invention, the crosslinked hydrogel includes polymers made from ionic or non-hydrophilic comonomers.
DETAILED DESCRIPTION OF THE INVENTION
This invention relates to the preparation of reactive hydrophilic coatings and hydrogels that can be placed on the surfaces of various substrates or within the structures of various structured (i.e., macro- or microstructured) substrates for the purpose of covalently attaching a functional material to the substrate. More specifically, the present invention provides compositions and processes for applying coatings including azlactone functionality onto substrate surfaces. The coatings may include thin films, thick gels, or any intermediate thickness. These coatings may provide for the attachment of functional materials to the substrate. A “functional material” is any chemical species having (a) a nucleophilic group that can react with an azlactone and (b) another reactive site, which is desired to be attached to the substrate to accomplish a specific purpose. In certain embodiments of the present invention, the functional material includes a biologically active material.
For the purposes of this invention, the following definitions shall have the meanings set forth.
“1°/2° amine-containing compound” as used herein shall mean any compound, molecule, composition or complex having one primary amine-containing functional group and at least one secondary amine-containing functional group.
“Azlactone functional group” shall mean a functional group having the structure:
wherein R
1
and R
2
are, independently, an alkyl group having 1-14 carbon atoms, a cycloalkyl group having 3-14 carbon atoms, an aryl group having 5-12 ring atoms, an arenyl group having 6-26 carbon atoms and 0-3 S, N, or nonperoxidic O atoms, or R
1
and R
2
taken together with the carbon to which they are both joined form a carbocyclic ring having 4-12 carbons, and n is the integer 0 or 1.
“Functional group” as used herein shall mean a combination of atoms in a molecule, compound, composition or complex that tends to function as a single chemical entity. Examples of functional groups include, but are not limited to, —NH
2
(amine), —COOH (carboxyl), siloxane, —OH (hydroxyl), and azlactone. For example, prior to reaction, certain crosslinkers may contain one or more amine functional groups and certain copolymers may contain one or more azlactone functional groups.
“Heterobifunctional” as used herein shall mean, with respect to any molecule, compound, composition or complex, having more than one functional group and having at least two functional groups that are different from one another. For example, an amino acid is heterobifunctional because it contains two functional groups, the amino group and the carboxyl group, that are different than one another.
“Hydrogel” means a water-containing gel, i.e., a polymer that is hydrophilic and will absorb water, yet is insoluble in water.
“Ionic,” with respect to monomers, shall be construed broadly to refer to monomers that inherently have a formal charge as well as monomers that are acidic or basic enough that they can acquire a formal charge when in contact with an aqueous medium.
“Moiety” as used herein shall mean the portion of a functional group from a first reactant that combines with a functional group of a second reactant to form a covalent bond in the reaction product. For example, in a peptide bond, the —NH— that participates in the pe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Azlactone-functional hydrophilic coatings and hydrogels does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Azlactone-functional hydrophilic coatings and hydrogels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Azlactone-functional hydrophilic coatings and hydrogels will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3208408

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.