Azeotrope-like compositions of 1,1,1,3,3-pentafluorobutane...

Compositions – Compositions containing a single chemical reactant or plural... – Organic reactant

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S580000, C570S161000, C570S164000, C570S165000, C570S134000, C570S177000, C570S178000, C570S180000, C203S077000, C203S080000

Reexamination Certificate

active

06673264

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to azeotropic and azeotrope-like compositions of 1,1,1,3,3-pentafluorobutane (HFC-365) and hydrogen fluoride.
BACKGROUND
Fluorocarbon based fluids have found widespread use in industry in a number of applications, including as refrigerants, aerosol propellants, blowing agents, heat transfer media, and gaseous dielectrics. Because of the suspected environmental problems associated with the use of some of these fluids, it is desirable to use fluids having low or even zero ozone depletion potential, such as hydrofluorocarbons (“HFC's”). Thus, the use of fluids that do not contain chlorofluorocarbons (“CFCs”) or hydrochlorofluorocarbons (“HCFCs”) is desirable. Additionally, the use of single component fluids or azeotropic mixtures, which do not fractionate on boiling and evaporation, is desirable. However, the identification of new, environmentally-safe, non-fractionating mixtures is complicated due to the fact that azeotrope formation is not readily predictable.
The industry is continually seeking new fluorocarbon based mixtures that offer alternatives to, and are considered environmentally safer substitutes for, CFC's and HCFCs. Of particular interest are combinations or mixtures containing 1,1, 1,3,3-pentafluorobutane (HFC-365) and an acid, both having low ozone depletion potentials. (HFC-365 is well known in the art and is described in U.S. Pat. Nos. 5,917,098; 5,395,997; 4,950,364; and 5,208,398, which are incorporated herein by reference.) Such mixtures are the subject of this invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENT
The present inventors have developed several compositions that can help to satisfy the continuing need for substitutes for CFCs and HCFCs. In one embodiment, the present invention provides azeotrope-like compositions comprising 1,1,1,3,3-pentafluorobutane (“HFC-365mfc”) and hydrogen fluoride (“HF”).
It is known that the composition of an azeotropic mixture varies with pressure variations in that the relative concentrations of the components of the azeotropic mixture will change with pressure. However, the degree to which a particular azeotropic mixture will vary with pressure is unpredictable. Accordingly, it is also unpredictable whether two compounds with close boiling points in azeotropic admixture can be separated by distillation which takes advantage of the pressure variation effect (for example, pressure swing distillation).
Applicants have discovered that the relative concentrations of the components of the 1,1,1,3,3-pentafluorobutane/hydrogen fluoride azeotrope-like composition change to a significant degree, and more than one skilled in the art would expect, as the pressure to which the azeotrope-like composition is exposed is changed. Such a significant composition differential facilitates separation because, in certain preferred embodiments, either 1,1,1,3,3-pentafluorobutane or hydrogen fluoride will concentrate in the distillate during distillation at one pressure, and then, upon distillation of the distillate at a different pressure, will tend to concentrate in the bottoms. This way, the component can be removed from the mixture through the bottoms.
Since these pressures are within the operating parameters of conventional distillation equipment, the process of the present invention can be practiced using existing equipment with little or no modification.
Accordingly, in another embodiment, the present invention provides a process for separating 1,1,1,3,3-pentafluorobutane from an 1,1,1,3,3-pentafluorobutane/hydrogen fluoride azeotropic mixture, which process comprises, consists essentially of, or consists of the steps of:
(A) distilling a mixture comprising an azeotropic mixture of 1,1,1,3,3-pentafluorobutane and hydrogen fluoride at a first pressure to produce a first overhead stream enriched in either 1,1,1,3,3-pentafluorobutane or hydrogen fluoride and a first bottoms stream enriched in the other component; and
(B) redistilling the first overhead stream at a second pressure to produce a second overhead stream enriched in the component enriched in the first bottoms stream and a second bottoms stream enriched in the component enriched in the first overhead stream.
The invention also provides a method of forming an azeotropic or azeotrope-like composition which consists essentially of blending 1,1,1,3,3-pentafluorobutane and hydrogen fluoride.
The term “enriched” is used herein to refer to the condition during the distillation of a mixture in which the concentration of one component in either the distillate or a bottoms product is higher relative to its concentration in the mixture.
The invention still further provides a process for removing 1,1,1,3,3-pentafluorobutane from a mixture containing 1,1,1,3,3-pentafluorobutane and at least one impurity, which comprises adding hydrogen fluoride to the mixture in an amount sufficient to form an azeotropic or azeotrope-like composition of the 1,1,1,3,3-pentafluorobutane and the hydrogen fluoride, and thereafter separating the azeotropic composition from the impurity.
Compositions
The present compositions are azeotrope-like compositions. As used herein, the term “azeotrope-like” is intended in its broad sense to include both compositions that are strictly azeotropic and compositions that behave like azeotropic mixtures. From fundamental principles, the thermodynamic state of a fluid is defined by pressure, temperature, liquid composition, and vapor composition. An azeotropic mixture is a system of two or more components in which the liquid composition and vapor composition are equal at the state pressure and temperature. In practice, this means that the components of an azeotropic mixture are constant boiling and cannot be separated during a phase change.
Azeotrope-like compositions are constant boiling or essentially constant boiling. In other words, for azeotrope-like compositions, the composition of the vapor formed during boiling or evaporation is identical, or substantially identical, to the original liquid composition. Thus, with boiling or evaporation, the liquid composition changes, if at all, only to a minimal or negligible extent. This is to be contrasted with non-azeotrope-like compositions in which, during boiling or evaporation, the liquid composition changes to a substantial degree. All azeotrope-like compositions of the invention within the indicated ranges as well as certain compositions outside these ranges are azeotrope-like.
The azeotrope-like compositions of the invention may include additional components that do not form new azeotrope-like systems, or additional components that are not in the first distillation cut. The first distillation cut is the first cut taken after the distillation column displays steady state operation under total reflux conditions. One way to determine whether the addition of a component forms a new azeotrope-like system so as to be outside of this invention is to distill a sample of the composition with the component under conditions that would be expected to separate a non-azeotropic mixture into its separate components. If the mixture containing the additional component is non-azeotrope-like, the additional component will fractionate from the azeotrope-like components. If the mixture is azeotrope-like, some finite amount of a first distillation cut will be obtained that contains all of the mixture components that is constant boiling or behaves as a single substance.
It follows from this that another characteristic of azeotrope-like compositions is that there is a range of compositions containing the same components in varying proportions that are azeotrope-like or constant boiling. All such compositions are intended to be covered by the terms “azeotrope-like” and “constant boiling”. As an example, it is well known that at differing pressures, the composition of a given azeotrope will vary at least slightly, as does the boiling point of the composition. Thus, an azeotrope of A and B represents a unique type of relationship, but with a variable composition depending on temperature an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Azeotrope-like compositions of 1,1,1,3,3-pentafluorobutane... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Azeotrope-like compositions of 1,1,1,3,3-pentafluorobutane..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Azeotrope-like compositions of 1,1,1,3,3-pentafluorobutane... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3227117

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.