Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2003-03-14
2004-11-09
Seidel, Marianne C. (Department: 1614)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S252120, C514S552000, C514S547000, C514S253050
Reexamination Certificate
active
06815450
ABSTRACT:
INTRODUCTION
1. Field of the Invention
The invention is in the field of promoting axon regeneration with PKC inhibitors.
2. Background of the Invention
Protein kinase C (PKC) is ubiquitously expressed in CNS tissues. Behavioral, genetic and pharmacological evidence have associated PKC activity with a wide range of neural functions, from controlling neurotransmitter release and synaptic efficacy to learning and memory processes (Tanaka et al., Annu Rev Neurosci 1994, 17, 551-67; Le Merrer et al., Pharmacol Res 2000, 41, 503-14; Battaini, 2001, Pharmacol Res 44, 1043-61). In addition, PKC activation has been implicated in neural cell proliferation, contraction and survival (Maher 2001, J Neurosci 21, 2929-38). For examples, PKC inhibitors have been reported to block neurite outgrowth in retinal axons (Heacock et al. 1997 Neurochem Res 22, 1179-850), dorsal root ganglion neurons (Theodore et al. 1995, J Neurosci 15, 7185-97), sympathetic neurons (Campenot et al. 1994, J. Neurochem 63, 868-78), PC12 cells (Kolkova et al. 2000 J Neurosci 20, 2238-46) and hippocampal organotypic cultures (Toni et al. Synapse 27, 199-207) PKC inhibitors have also been shown to promote dendritic growth in Purkinje cells in cerebellar slice cultures (Metzger et al. 2000, Eu J Neurosci 12, 1993-2005) and to promote extension of dorsal root ganglion cells filopodia (Bonsall et al. 1999, Brain Res 839, 120-32); see also, Prang et al. 2001, Exp Neuro 169, 135-147; Powell et al. 2001, Glia 33, 268-97.
Prior studies have identified a vast number of compositions that when added to isolated neurons in culture, appear to enhance, retard or repel cell growth. Growth promoters include complex reagents like serum, growth factors like NGF, specific guidance molecules like netrins and semaphorins, and many small molecule activators, like 7&bgr;-Acetoxy-8,13-epoxy-1&agr;,6&bgr;,9&agr;-trihydroxylabd-14-ene-11-one (U.S. Pat. No. 6,268,352; Song et al. 1998, Science 281, 1515-18). However, those skilled in the art recognize that in vitro growth regulation of isolated neurons is not predictive of the behavior of CNS neurons in an environment where they are subject to growth repulsion mediated by endogenous neural growth repulsion factors (see review by Tessier-Lavigne and Goodman (1996, Science 274, 1123-1133); compounds found to promote nerve growth in vitro and/or in embryonic systems are generally unable to overcome in situ repulsion present in the adult CNS.
It is well known that peripheral nerves enjoy a robust regenerative capacity whereas CNS nerves do not, which has been attributed to the presence of axon growth inhibitory molecules in CNS oligodendrocyte-derived myelin (1-3) including myelin associated glycoprotein (MAG). Immobilized CNS myelin proteins have been shown to potently inhibit axon outgrowth from a variety of neurons in vitro (4). Moreover, anti-myelin antibodies have been used to neutralize the inhibitory effects of myelin and, more importantly, stimulate regeneration of the corticospinal tract in vivo (5). Thus far three of the inhibitory components of CNS myelin have been identified—MAG (6, 7), NOGO-A (8-10) and chondroitin sulfate proteoglycan (CSPG) (11). A recent study using a Xenopus spinal neuron-based growth cone turning assay had implicated PI3K in mediating the repulsive effects of MAG (12), raising the question as to how such a general signaling molecule is involved in inhibiting axon regeneration.
In preliminary experiments reported below, we show that such inhibitory activities of myelin components involve three signaling pathways, namely mitogen activated protein kinase kinases (MEK), phosphoinositide 3-kinase (PI3K) and phospholipase C-g (PLC-g). Among these, we show that the activation of an important target of PI3K, the serine/threonine kinase Akt, promotes or inhibits neurite outgrowth in different types of neurons. Moreover, modulating the activity of protein kinase C is able to switch Akt-elicited responses between promotion and inhibition. Based on these findings, we undertook investigations on the ability of PKC inhibitors to promote clinically relevant spinal axon regeneration. We disclose that treatment with PKC inhibitors surprisingly and dramatically stimulates neurite outgrowth in the presence of CNS myelin both in vitro and in vivo. Our findings demonstrate that inhibiting the intracellular PKC activity provides an effective therapeutic avenue to promote axon regeneration after CNS injury.
SUMMARY OF THE INVENTION
The invention provides methods for promoting regenerative growth of an adult mammalian central nervous system neuron axon subject to growth inhibition by endogenous, myelin growth repulsion factors. The method generally comprises the steps of delivering to the axon a therapeutically effective amount of a specific inhibitor of protein kinase C, whereby regenerative growth of the axon is promoted; and detecting a resultant promotion of the regenerative growth of the axon. In a particular application, the axon is an adult human central nervous system spinal neuron axon in situ and damaged by a spinal injury and the delivering step is effected by locally administering to a human patient in need thereof at the axon a therapeutically effective amount of the inhibitor.
REFERENCES:
patent: 5385915 (1995-01-01), Buxbaum et al.
patent: 5461146 (1995-10-01), Lewis et al.
patent: 6268352 (2001-07-01), Song et al.
Prang et al. 2001, Experimental Neurology, 169:135-47.
He Zhigang
Koprivica Vuk
Sivasankaran Rajeev
Children's Medical Center Corporation
Delacroix-Muirheid C.
Osman Richard Aron
Seidel Marianne C.
LandOfFree
Axon regeneration with PKC inhibitors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Axon regeneration with PKC inhibitors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Axon regeneration with PKC inhibitors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3300414