Axon regeneration with PKC inhibitiors

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S410000, C514S415000

Reexamination Certificate

active

06664266

ABSTRACT:

FIELD OF THE INVENTION
The invention is in the field of promoting axon regeneration with PKC inhibitors.
BACKGROUND OF THE INVENTION
Protein kinase C (PKC) is ubiquitously expressed in CNS tissues. Behavioral, genetic and pharmacological evidence have associated PKC activity with a wide range of neural functions, from controlling neurotransmitter release and synaptic efficacy to learning and memory processes (Tanaka et al., Annu Rev Neurosci 1994, 17, 551-67; Le Merrer et al., Pharmacol Res 2000, 41, 503-14; Battaini, 2001, Pharmacol Res 44, 1043-61). In addition, PKC activation has been implicated in neural cell proliferation, contraction and survival (Maher 2001, J Neurosci 21, 2929-38). For examples, PKC inhibitors have been reported to block neurite outgrowth in retinal axons (Heacock et al. 1997 Neurochem Res 22, 1179-850), dorsal root ganglion neurons (Theodore et al. 1995, J Neurosci 15, 7185-97), sympathetic neurons (Campenot et al. 1994, J. Neurochem 63, 868-78), PC12 cells (Kolkova et al. 2000 J Neurosci 20, 2238-46) and hippocampal organotypic cultures (Toni et al. Synapse 27, 199-207) PKC inhibitors have also been shown to promote dendritic growth in Purkinje cells in cerebellar slice cultures (Metzger et al. 2000, Eu J Neurosci 12, 1993-2005) and to promote extension of dorsal root ganglion cells filopodia (Bonsall et al. 1999, Brain Res 839, 120-32); see also, Prang et al. 2001, Exp Neuro 169, 135-147; Powell et al. 200 1, Glia 33, 268-97.
Prior studies have identified a vast number of compositions that when added to isolated neurons in culture, appear to enhance, retard or repel cell growth. Growth promoters include complex reagents like serum, growth factors like NGF, specific guidance molecules like netrins and semaphorins, and many small molecule activators, like 7&bgr;-Acetoxy-8,13-epoxy-1&agr;,6&bgr;,9&agr;-trihydroxylabd-14-ene-11-one (U.S. Pat No. 6,268,352; Song et al. 1998, Science 281, 1515-18). However, those skilled in the art recognize that in vitro growth regulation of isolated neurons is not predictive of the behavior of CNS neurons in an environment where they are subject to growth repulsion mediated by endogenous neural growth repulsion factors (see review by Tessier-Lavigne and Goodman (1996, Science 274, 1123-1133); compounds found to promote nerve growth in vitro and/or in embryonic systems are generally unable to overcome in situ repulsion present in the adult CNS.
It is well known that peripheral nerves enjoy a robust regenerative capacity whereas CNS nerves do not, which has been attributed to the presence of axon growth inhibitory molecules in CNS oligodendrocyte-derived myelin (1-3) including myelin associated glycoprotein (MAG). Immobilized CNS myelin proteins have been shown to potently inhibit axon outgrowth from a variety of neurons in vitro (4). Moreover, anti-myelin antibodies have been used to neutralize the inhibitory effects of myelin and, more importantly, stimulate regeneration of the corticospinal tract in vivo (5). Thus far three of the inhibitory components of CNS myelin have been identified—MAG (6, 7), NOGO-A (8-10) and chondroitin sulfate proteoglycan (CSPG) (11). A recent study using a Xenopus spinal neuron-based growth cone turning assay had implicated P13K in mediating the repulsive effects of MAG (12), raising the question as to how such a general signaling molecule is involved in inhibiting axon regeneration.
In preliminary experiments reported below, we show that such inhibitory activities of myelin components involve three signaling pathways, namely mitogen activated protein kinase kinases (MEK), phosphoinositide 3-kinase (P13K) and phospholipase C-g (PLC-g). Among these, we show that the activation of an important target of P13K, the serine/threonine kinase Akt, promotes or inhibits neurite outgrowth in different types of neurons. Moreover, modulating the activity of protein kinase C is able to switch Akt-elicited responses between promotion and inhibition. Based on these findings, we undertook investigations on the ability of PKC inhibitors to promote clinically relevant spinal axon regeneration. We disclose that treatment with PKC inhibitors surprisingly and dramatically stimulates neurite outgrowth in the presence of CNS myelin both in vitro and in vivo. Our findings demonstrate that inhibiting the intracellular PKC activity provides an effective therapeutic avenue to promote axon regeneration after CNS injury.
SUMMARY OF THE INVENTION
The invention provides methods for promoting regenerative growth of an adult mammalian central nervous system neuron axon subject to growth inhibition by endogenous, myelin growth repulsion factors. The method generally comprises the steps of delivering to the axon a therapeutically effective amount of a specific inhibitor of protein kinase C, whereby regenerative growth of the axon is promoted; and detecting a resultant promotion of the regenerative growth of the axon. In a particular application, the axon is an adult human central nervous system spinal neuron axon in situ and damaged by a spinal injury and the delivering step is effected by locally administering to a human patient in need thereof at the axon a therapeutically effective amount of the inhibitor.
DESCRIPTION OF PARTICULAR EMBODIMENTS OF THE INVENTION
The following descriptions of particular embodiments and examples are offered by way of illustration and not by way of limitation. Unless contraindicated or noted otherwise, in these descriptions and throughout this specification, the terms “a” and “an” mean one or more, the term “or” means and/or and polynucleotide sequences are understood to encompass opposite strands as well as alternative backbones described herein.
The invention provides methods for promoting regenerative growth of an adult mammalian central nervous system neuron axon subject to growth inhibition by endogenous, myelin growth repulsion factors. This regenerative growth requires a mature axon to overcome endogenous (naturally present in situ) repulsive factors present in adult mammals. The adult mammalian CNS, including that of the functionally adult CNS of 7-9 day post natal rats (below), imposes endogenous repulsive factors not present in neonatal or embryonic mammals. The method generally comprises the steps of delivering to the axon a therapeutically effective amount of a specific inhibitor of protein kinase C, whereby regenerative growth of the axon is promoted; and detecting a resultant promotion of the regenerative growth of the axon. The axon will typically be retained in situ, though the method can be practiced with a reconstituted in vitro system wherein the recited axon and repulsive factors are isolated. In a particular application, the axon is an adult human central nervous system spinal neuron axon in situ and damaged by a spinal injury and the delivering step is effected by locally administering to a human patient in need thereof at the axon a therapeutically effective amount of the inhibitor.
In particular applications, the inhibitor effectively inhibits classical type PKC present in the target CNS tissue. A wide variety of suitable inhibitors may be employed, guided by art-recognized criteria such as efficacy, toxicity, stability, specificity, half-life, etc. In particular embodiments, the inhibitor is elected from competitive inhibitors for the PKC ATP-binding site, including staurosporine and its bisindolylmaleimide derivitives, Ro-31-7549, Ro-31-8220, Ro-31-8425, Ro-32-0432 and Sangivamycin; drugs which interact with the PKC's regulatory domain by competing at the binding sites of diacylglycerol and phorbol esters, such as calphostin C, Safingol, D-erythro-Sphingosine; drugs which target the catalytic domain of PKC, such as chelerythrine chloride, and Melittin; drugs which inhibit PKC by covalently binding to PKC upon exposure to UV lights, such as dequalinium chloride; drugs which specifically inhibit Ca-dependent PKC such as Go6976, Go6983, Go7874 and other homologs, polymyxin B sulfate; drugs comprising competitive peptides derived from PKC sequence; and other PKC inhib

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Axon regeneration with PKC inhibitiors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Axon regeneration with PKC inhibitiors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Axon regeneration with PKC inhibitiors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3179720

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.