Axial flow fan having counter-rotating dual impeller blade...

Pumps – Motor driven – Electric or magnetic motor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S244000, C417S423500, C417S423700, C361S695000, C416S19800R, C416SDIG002

Reexamination Certificate

active

06565334

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an axial flow fan, and more particularly to a multiple impeller arrangement with coaxial impellers that rotate in opposite directions. The multiple impeller counter-rotating axial flow fan of the present invention is especially suitable for use in cooling electronic components.
BACKGROUND OF THE INVENTION
A conventional axial flow fan is generally composed of a driving motor, a cylindrical central hub section mounted on a motor shaft attached to the driving motor, a plurality of blades affixed to the hub, and a housing for encasing the fan or impeller, used herein as equivalent terms. Each of the blades extends radially outward from the central hub section of the fan. The motor shaft is attached to the hub section at a central aperture and thus the hub section may be rotated by the driving motor via the motor shaft. In such an arrangement, the hub section together with the blades are rotated by the motor about an axis of the outer casing in order to force air flow from an inlet area to an outlet area of the fan. The blades of the fan are air foils configured so as to make the blades generate a force in the opposite direction of the blade's direction of rotation and an air flow that is perpendicular to the blade's direction of rotation.
Axial flow fans such as Model No. 5920 produced by IMC Magnetics Corporation, the assignee of the present application, are known which utilize a unipolar winding employing a four pole motor where only two of the windings are ON at a time. These fans employ circuitry including circuit elements of a substantial size, such as an inductor to reduce the starting current, transistors large enough to handle the power levels, and large clamping diodes needed to protect the transistors. Such axial flow fans cannot handle input voltages in the range of 57V-64V, are limited to a maximum input voltage of about 56V, and are more typically operated at an input voltage of about 48V.
Model No. 5920 measures two inches in axial width due to both the large size of the diodes, inductors, and transistors used, as well as the number of turns required for a unipolar winding. Furthermore, the axial width of Model No. 5920 is attributed to its 5 blades wherein each blade is characterized by a symmetrical cross-section approximately described as curved flat plates. As such, these blades are not aerodynamically efficient and thus require a larger chord length to meet the performance requirements forcing the dimensions of Model No. 5920 to a two inch axial width.
With the continual increase in the density and load-carrying capability of electronic components on circuit boards, and the consequential increase in heating problems resulting therefrom, axial flow fans are increasingly being used in an effort to combat such heating problems. During the design of such axial flow fans, it is important to make them as small and as cost-effective as possible while maintaining, or even increasing, their ability to cool electronic components. In particular, it is important to reduce the overall size of such a fan as much as possible. For example, the two inches axial width of Model No. 5920 is wider than optimal for use as an axial flow fan for cooling electronic components. Thus, it is desirable to reduce its size while maintaining its performance parameters and design constraints.
One method to reduce the overall size of such a fan is to eliminate large electronic components and reduce the size of other components while maintaining performance parameters and design constraints. For instance, the housing of the axial flow fan may be utilized as a heat sink to reduce the axial width of the fan by eliminating the need for a separate heat sink.
In addition, in order to reduce the overall size of an axial flow fan, it is desirable to utilize narrow chord blades. However, the use of such narrow chord blades results in decreased performance, particularly a decrease in the fan pressure and air flow. These decreases in performance must be offset by varying the design parameters. It is known that, among other factors, the chord length, camber angle, stagger angle, and the cross-sectional shape of the blades are possible factors affecting the performance of the fan. In addition, it is known that by varying the work distribution along a blade's span, the chord length may be varied along the blade span while maintaining performance parameters.
In theory, the larger the camber angle, the greater the lift force under a constant angle of attack. However, if the camber angle is too large the blade may stall, resulting in a decrease in performance and an increase in noise signature. Consequently, the camber angle must be designed to the proper value.
By way of a further example, a decrease in the work distribution at a radial location will allow for a decrease in chord length with a resultant decrease in velocity exiting the blade at that radial location. Thus, it is desirable to minimize the work distribution at the hub section (root of the blade), since this affects axial width, and to maximize the work distribution at the tip of the blade to deliver the greatest blade exit velocity at the tip. Such an approach was disclosed in U.S. Pat. No. 5,320,493. However, this approach may lead to an intolerable increase in the noise signature of the fan due to the increase in tip velocity exiting the blade as well as an increase in turbulent air exiting the tip of the blades. Thus, it is desirable to locate the maximum work distribution at some favorable location between the root portion and the tip portion.
Furthermore, the cross-sectional shape of the blade affects its velocity distribution. Circular arc profiles, such as NACA series 65 airfoils, exhibit a velocity profile which results in a rapid decrease in the velocity along the suction surface at the trailing edge of the blade. Such a large deceleration gradient results in a more unstable boundary layer, promoting boundary layer separation and hence resulting in loss of lift and greater turbulent air exiting the blade. Thus, the velocity profile of the cross-sectional airfoil must be designed so that a favorable velocity profile is achieved.
Various prior U.S. patents had been developed in this field. For example, U.S. Pat. No. 4,971,520, U.S. Pat. No. 4,569,631, U.S. Pat. No. 5,244,347, U.S. Pat. No. 5,326,225, U.S. Pat. No. 5,513,951, U.S. Pat. No. 5,320,493, U.S. Pat. No. 5,181,830, U.S. Pat. No. 5,273,400, U.S. Pat. No. 2,811,303, and U.S. Pat. No. 5,730,483 disclose axial flow fans. However, the fans disclosed in these patents have not effectively combined the above parameters to overcome the problems described above. In particular no invention discloses a family of airfoil profiles or a blade which delivers the performance of the present invention while reducing the axial width of the fan. Nor does any invention disclose use of such optimized blades in a multiple impeller counter-rotating arrangement to further exploit the reduced width of each impeller individually and to result in a fan having reduced overall size with improved performance.
In the non-analogous field of aircraft rotors, the use of multiple coaxial rotors, as shown in U.S. Pat. No. 3,127,093 to Sudrow, is known. The Sudrow Patent discloses a “Ducted Sustaining Rotor for Aircraft” which utilizes two sets of coaxial rotors, each of which has a plurality of air foils configured to create lift. These rotors are mounted on motor shafts which are capable of spinning in opposite directions. Such counter-rotating arrangements have been utilized to reduce torque, to reduce axial air flow and to reduce vibration and noise.
Unlike the air foils attached to aircraft rotors, the air foils attached to fan rotors are configured to create air flow. Conventional theory predicts that two identical axial flow fans operating in series in a free flow environment, where there is not substantial downstream flow resistance, will not provide more air flow than one of the axial flow fans operating by itself. Conventional theory also

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Axial flow fan having counter-rotating dual impeller blade... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Axial flow fan having counter-rotating dual impeller blade..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Axial flow fan having counter-rotating dual impeller blade... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3011687

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.