Axial feedstock injector with single splitting arm

Fluid sprinkling – spraying – and diffusing – With means fusing solid spray material at discharge means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S080000, C239S081000, C239S423000, C239SDIG007, C219S076160, C219S121500

Reexamination Certificate

active

06669106

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to an injector used for feeding feedstock material into the axis of a jet of heated gas.
BACKGROUND OF THE INVENTION
Thermal spraying is a coating method wherein powder or other feedstock material is fed into a stream of heated gas produced by a plasmatron or by the combustion of fuel gasses. The feedstock is entrapped by the hot gas stream from which it is transferred heat and momentum and it is impacted onto a surface where it adheres and solidifies, forming a relatively thick thermally sprayed coating by the cladding of subsequent thin layers or lamellae.
In the case of some thermal spray applications, injecting feedstock axially into a heated gas stream presents certain advantages over traditional methods wherein feedstock is fed into the stream in a direction generally described as radial injection, in other words in a direction towards the axis of the gas stream. The advantages of the axial injection relate mainly to the potentitto control better the linearity and the direction of feedstock particle trajectory and to increase its velocity. However, this has been accomplished in the past by interposing a core element through which feedstock is injected axially. Although the fundamental principle of wrapping a gas flow around a core member appears to be a desirable way of achieving axial injection, in practice the core causes significant turbulence of the gas stream. It would be therefore desirable to inject feedstock in a manner that achieves an optimal particle trajectory in the axial direction by inducing minimal turbulence of the gas stream.
Plasma torches with axial injection of feedstock can be classified in two major groups: a) those with multiple cathodes, also known as the pluri-plasmatron or the multiple-jet type and b) those with single cathode, also known as the single jet or single electrode type.
Examples of multiple cathode plasma torches with axial injection are found in U.S. Pat. Nos. 3,140,380 of Jensen, 3,312,566 of Winzeler et al., 5,008,511 of Ross and 5,556,558 of Ross et al. They show a plurality of plasmatrons symmetrically arranged about the axis of the plasma spray torch and provide for nozzle means to converge the plurality of plasmas into a single plasma stream. Feeding means are also provided to inject feedstock materials along the axis of the single plasma stream. This type of plasma torches involve complex torch configurations with increased chances of malfunctioning and require the use of multiple power supplies for powering the multiple cathodes. The use of multiple cathodes and multiple arc chambers, which need to be replaced regularly, induce high operating costs for such plasma torches. A different approach to achieve axial injection employing multiple cathodes and a complex single arc chamber configuration is found in U.S. Pat. Nos. 5,225,652, 5,406,046 and 5,332,885, all three issued to Landes.
The single cathode type plasma torches with axial injection have certain advantages over multiple cathodes systems such as less complex torch configuration and reduced operating and manufacturing costs. Typical arrangements for the single cathode approach are found in U.S. Pat. Nos. 4,540,121 of Browning, 4,780,591 of Bemecki et al., 5,420.391 of Delcea, 6,202,939 of Delcea and 5,837,959 of Muehlberger et al.
U.S. Pat. No. 4,780,591 of Bemecki et al. teaches the semi-splitting of the plasma stream by means of a core member positioned axially within the feedstock injector and a plasma splitting arm which extends from the core to the injector internal wall, defining a “C” shaped plasma channel. The feedstock is injected axially through the core member. As shown in
FIG. 1
of the drawings, this approach creates an asymmetrical plasma stream flow within the injector, with a portion of the plasma stream going around the core member, while the arm splits the other portion of the stream. Apart for the obvious asymmetry, this particular type of flow dynamics creates a flow conflict that induces asymmetrical jet turbulence.
U.S Pat. No. 5,420.391 of Delcea also teaches a core member positioned axially but instead of providing only one arm as in Bernecki '591, two or more splitting arms now extend from the core member to the outer walls, defining kidney-shaped plasma channels arranged symmetrically around the core, as shown in
FIG. 2.1
. This arrangement allows the symmetrical wrapping of the gas flow around the core member. Similarly, U.S. Pat. No. 5,556,558 of Ross teaches kidney shaped plasma channels arranged in an encircling relationship around a core member but instead of splitting a single plasma stream, Ross provides for independent plasma jets for each of the plasma channels. Inherent to the design in Delcea '391 and in particular when only two plasma channels are provided, each channel has plasma-shaping walls defining essentially a kidney-shaped cross-section in order to accommodate either a cylindrical or a conical core member between the channels. A plasma torch having a single gas stream with circular cross-section flowing around a central core member suffers two fluid mechanic transformations while passing through the internal pathways of the injector, i.e. firstly the splitting of the stream into a plurality of streams around the core and secondly the volumetric transformation as each of the split streams conforms to the shape of the kidney shaped channels encircling the core member. When leaving the injector, the split streams must be merged smoothly into a single stream having again an essentially circular cross-section. The region where the split streams merge (which is also the region where the feedstock is injected into the stream) becomes quite turbulent, causing non-axial feedstock trajectories within the merged stream. According to fluid mechanics theory, turbulence is generated inside each of the splitting channels due to gas flow separation occurring along the walls of the core and of the channel cavities adjacent to each splitting arm. This gas flow separation is caused by adverse pressure gradients due to the forced shaping of the split stream around the core member. The flow turbulence at region of feedstock injection introduces non-axial velocity vectors causing random feedstock trajectories, resulting in molten feedstock adhering to, and solidifying on the internal wall of the output nozzle with the consequent malfunctioning of the spraying process. These phenomena are shown schematically in
FIG. 2.1
and
FIG. 2.2
of the drawings.
FIG. 2.1
for example, shows the two opposed cross-sectional flow gradients induced within each plasma channel due to the kidney shaped flow around and about the central core member. The effects are as follows: a) plasma gas turbulence due to the opposing directions of the flow and the counter-flow gradients induced within each converging channel (only one type of flow gradient is shown in each channel in
FIG. 2.1
) and b) plasma gas turbulence due to the gas flow separating (detaching) from the splitting arms and core surfaces. Consequently, the feedstock is injected into a non-laminar and turbulent flow, resulting in at least some percentage of the feedstock particles attaining non-axial trajectories. This directs a portion of the feedstock particles towards the inner wall of the output nozzle, resulting in the build up of molten deposits on the inner wall of the output nozzle and possibly on the feedstock injection tip itself. The nozzle build-up phenomenon is shown schematically in
FIG. 2.2
.
This “kidney shape effect” can be reduced to some degree in Delcea '391 by providing an increased plurality of plasma channels as shown schematically in
FIG. 2.3
of the drawings. For example, if six or more channels were provided, their cross-sections would shrink to become more or less circular or slightly oval. This approach would result in a proportionate increase in the number of splitting arms as well as an increase in the total surface area of the internal pathways exposed to the hot gas. Consequently, the conduction heat losses

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Axial feedstock injector with single splitting arm does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Axial feedstock injector with single splitting arm, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Axial feedstock injector with single splitting arm will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3170064

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.