Communications: electrical – Condition responsive indicating system – Specific condition
Reexamination Certificate
2001-02-13
2002-08-06
Trieu, Van (Department: 2632)
Communications: electrical
Condition responsive indicating system
Specific condition
C340S682000, C340S815580, C324S207160, C324S207170
Reexamination Certificate
active
06429781
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an axial bearing wear detector device for detecting axial bearing wear in canned motors.
In general, canned motors are employed mainly for driving pumps and used for chemical plants. Therefore high reliability is required of the canned motors.
In canned motor pumps, the canned motor and the pump constitute monoblock construction to prevent the leakage of the fluid, thus making it impossible to monitor the inner conditions visually. In most cases, the rotor of the canned motor for rotatably driving the impeller of the pump is journaled by a slide bearing which is lubricated with a pump fluid. To operate the canned motor efficiently, it is necessary to monitor the condition of slide bearing wear from outside.
Accordingly, axial bearing wear detector devices were suggested, for example, in Japanese Patent Publication No. 21924 of 1982, and Japanese Patent Laid-Open Publication Nos. 80103 of 1998 and 148819 of 1999. The devices suggested therein are adapted to have axial detection coils provided on the both axial end portions of the stator of a canned motor. Voltages induced in these axial detection coils are compared to detect the axial position of the rotor to be rotatably journaled by slide bearings, thereby allowing the amount of bearing wear to be estimated based on the axial position of the rotor.
Conventional canned motor axial bearing wear detector devices were adapted to estimate the amount of bearing wear based on the axial position of the rotor. However, the rotor journaled by slide bearings has axial play and thus may be displaced in the axial direction depending on the condition of the load even without axial wear occurring on the slide bearings. This made it impossible to clearly determine whether or not the rotor was displaced because wear had occurred on the slide bearings.
OBJECTS AND SUMMARY OF THE INVENTION
In order to solve the problems, the object of the present invention is to provide a canned motor axial bearing wear detector device which clearly indicates the axial wear of the bearings taking the normal axial play of the rotor into account. The canned motor axial bearing wear detector device can also indicate clearly in which axial direction and how excessively the wear has occurred.
The canned motor axial bearing wear detector device according to the invention comprises axial detection coils on a canned motor having a stator and a rotor at both axial ends of the stator. A differential amplifier circuit amplifies differentially a rectified and smoothed voltage induced in the axial detection coils outputs a positive or negative voltage signal in response to a direction and position of axial displacement of the rotor relative to the stator. A dead zone circuit and a reference signal generator circuit output a reference signal. An axial wear indicator indicates a degree of bearing wear in an axial direction of the canned motor in response to the signal output from the comparator circuits of the dead zone circuit. Here, the dead zone circuit includes a polarity inverting circuit for inverting positive and negative voltage signals output from the differential amplifier circuit. A first comparator circuit outputs a signal in response to an amplitude of a voltage signal when the voltage signal output from the polarity inverting circuit is greater than the reference signal output from the reference signal generator circuit. A second comparator circuit outputs a signal in response to an amplitude of a voltage signal when the voltage signal output from the differential amplifier circuit is greater than the reference signal output from the reference signal generator circuit.
In this axial bearing wear detector device, axial displacement of the rotor causes a change in voltage induced in the axial detection coils on both axial ends of the stator. The differential amplifier circuit amplifies differentially a rectified and smoothed voltage induced in the axial detection coils and outputs a positive or negative voltage signal in response to the direction and position of axial displacement of the rotor relative to the stator. The dead zone circuit allows the polarity inverting circuit to invert positive and negative voltage signals from the differential amplifier circuit. The first comparator circuit outputs a signal in response to the amplitude of the voltage signal when the voltage signal output from the polarity inverting circuit is greater than the reference signal output from the reference signal generator circuit. The second comparator circuit outputs a signal in response to the amplitude of the voltage signal when the voltage signal output from the differential amplifier circuit is greater than the reference signal output from the reference signal generator circuit. That is, the amplitude of the reference signal from the reference signal generator circuit is set to a value that is approximately equal to the signal range resulting from normal axial play. When the signal is in the axial-play range, neither of the comparator circuits outputs signals representing axial wear. In this event, only the center position indicator is energized. As axial wear occurs, the signal from the output terminal exceeds the allowed value of axial play. The axial wear indicator then indicates the amount and direction of axial bearing wear of the canned motor in response to the signal output from the comparator circuits of the dead zone circuit. Thus, the dead zone circuit allows the wear indicators to remain unlit for the axial displacement of the rotor corresponding to the play of the rotor and to be lit only for axial displacement of the rotor caused by bearing wear. Therefore, it is possible to determine whether the axial displacement of the rotor is within the range of play or whether the axial displacement is due to bearing wear and clearly indicates axial wear of the bearings.
The canned motor axial bearing wear detector device according to a further embodiment of the invention includes a wear indicator that comprises a first axial wear indicator for indicating a degree of bearing wear in an axial direction of the canned motor in response to the signal output from one of the comparator circuits of the dead zone circuit. The axial indicator also comprises a second axial wear indicator for indicating a degree of bearing wear in the axial direction of the canned motor in response to the signal output from the other one of the comparator circuits of the dead zone circuit.
As mentioned above, the first and second wear indicators are employed as the axial wear indicator. This makes it possible to determine the amount and the direction of axial displacement of the rotor caused by bearing wear and to clearly indicate in which direction and how excessively the wear has occurred.
The canned motor axial bearing wear detector device includes the first and second axial wear indicator with an LED sequential bar graph. The number of LEDs on the LED bar graph to be lit is varied in response to the signal output from each of the comparator circuits of the dead zone circuit.
The number of illuminated LEDs is varied in response to the amplitude of the signal output from each of the comparator circuits of the dead zone circuit. This clearly indicates not only the magnitude of the wear, but also the direction of the wear.
REFERENCES:
patent: 4211973 (1980-07-01), Sato et al.
patent: 5926001 (1999-07-01), Eguchi
patent: 5955880 (1999-09-01), Beam et al.
patent: 6107794 (2000-08-01), Kipp et al.
Abe Masaru
Misato Hisashi
Nii Takashi
Darby & Darby
Kabushiki Kaisha Teikoku Denki Seisakusho
Trieu Van
LandOfFree
Axial bearing wear detector device for canned motor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Axial bearing wear detector device for canned motor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Axial bearing wear detector device for canned motor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2916145