Avionics system

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Aeronautical vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S014000, C340S961000

Reexamination Certificate

active

06701227

ABSTRACT:

FIELD OF THE INVENTION
The invention concerns the field of avionics, specifically the providing of information to a pilot or flight crew and, potentially, to ground-based communications regarding the status of an aircraft.
BACKGROUND OF THE INVENTION
Avionics devices generally available in modern aircraft range from instruments which had their technological origins in the first half of the twentieth century to more advanced, electronic- and computer-operated units. Regardless of their level of technological advancement, avionics devices characteristically accept information or data from a source and provide that information to the pilot either visually in raw form or in a translated (e.g., graphical) format that is more readily meaningful, or via a combination of visual and audio information.
These devices have historically been single-function units. That is, an avionics device will usually provide a single major piece of information. For example, a directional gyro indicates magnetic course, and tells the pilot nothing about airspeed, engine rpm, or oil temperature. Multi-function avionics devices were historically limited to a small set of functions, for example, a turn-and-bank coordinator provides a turn indicator and a slip-and-skid indicator.
One of the historical purposes served by an array of discrete devices is redundancy and, thus, overall systems reliability. For example, if the gyro in an artificial horizon failed in flight, that failure would not affect the operation of the airspeed indicator, the turn-and-bank coordinator, or the directional gyro, thus leaving the pilot without the artificial horizon but with an adequate instrument panel.
A further purpose in such discrete devices has been compensating for the variations in instruments needed for various airplanes. For example, the airspeed indicator for an aircraft may bear markings to indicate maximum flap extension speed, maneuvering speed, and never exceed speed. Because these speeds vary for different aircraft, combining other expensive instruments with the airspeed indicator would require manufacturing a variety of different models of the instrument package just to provide varied airspeed indications needed for various aircraft. Thus the cost of manufacturing and keeping inventory would rise, as would the cost to the aircraft owner to replace a device when only one component had failed.
The advent of reliable microelectronics and computers, as well as solid-state “gyroscopes” has changed the available instrumentation options. Electronic flight information systems, or “EFIS,” now combine a group of flight data displays into one or more displays for the pilot. These systems often combine information such as an artificial horizon display, directional gyro display, airspeed indicator, and vertical speed indicator into a single graphical display. Because they use electronic processors, these units can provide programmable indicators, such as for airspeed limitations, and can thus be programmed for use in a wide variety of airplanes.
However, EFIS does not eliminate the need for some redundancy for the purpose of safety. In a single-display EFIS, the failure of one critical component, such as a power-supply connection to the display, can eliminate all of the information the EFIS normally displays. Thus, safety concerns dictate that the airplane be equipped with some redundant, discrete instrumentation, which is expensive, or that the EFIS be manufactured to extreme reliability standards, which is also expensive. Costs for high-quality, FAA-approved EFIS units can be on the order of $50,000, and beyond the financial reach of many small airplane pilots. Indeed, the cost of such a unit exceeds the total value of many small airplanes.
Avionics devices also must be connected to an airplane to be of use. Depending on the avionics device, such connections may include: (1) condition inputs, such as ram- or static-air pressure, outside air temperature, oil pressure, and the like; (2) signal inputs, such as antenna feeds for communications and navigation radios; and (3) controls from the pilot, such as frequency changes or changes to trim settings. Further, a device may require additional connections, supplying such needs as power to operate, power to operate built-in lighting (usually from a dimmer circuit), or a source of positive or negative (vacuum) air pressure. Power connections must often be routed through switches and circuit breakers. Thus, the “behind-the-panel” wiring and connections for an airplanes avionics is complicated, often messy in appearance, and expensive to repair or replace.
Further, avionics devices cannot always be flexibly arranged on an aircraft panel. Once the original holes are set in the panel, instrument positions are somewhat fixed. Even though many devices conform to “standard” sizes, a 3½-inch device cannot be moved into a 2¼-inch instrument hole, even if wiring and other connections could be moved. Similarly, radio widths and heights follow “standards” which change with function, the manufacturer, and the ever-advancing level of technology, which allows smaller devices to do more than their predecessors.
Accordingly, it is desirable to provide an avionics system which simultaneously overcomes many of the limitations of the current state of the art. It is an object of the present invention to provide a device and method for providing avionics information to a pilot which is reliable, allows continued operation in the event of the failure of one, or even multiple, components, reduces interconnection complexity, allows easy replacement or upgrade of individual components, and allows for flexibility in display arrangement.
It is a further object of this invention to reduce manufacturing costs, and thus retail costs, for avionics devices, and to allow greater flexibility in selecting avionics components for installation in a particular airplane.
SUMMARY OF THE INVENTION
The present invention comprises an information bus, which is intended to provide a set or subset of sensor information to each avionics device. For purposes of this invention, “sensor” includes all forms of devices intended to collect information from the environment, or from the airplane itself. Thus, “sensor,” as used herein, includes, but is not limited to: pilot tubes; static air pressure sensors; fuel gauges; oil pressure sensors; oil temperature sensors; water pressure sensors; water temperature sensors fuel pressure sensors; fuel, water, or oil flow sensors; thermocouples; cylinder head temperature sensors; exhaust gas temperature sensors; engine rotation rate sensors; electrical voltage sensors; electrical current sensors; trim position sensors; antennas, such as communication, navigation, and transponder antennas; air or vacuum pressure sensors; and gyroscopic or rotational position sensors. As those of skill in the art will recognize, not all of these sensors will exist on every airplane. Further, it may be desirable to provide redundancy for some sensors, such as gyroscopes, so that all flight instruments which depend on gyroscopic information from the bus will not become non-functional as the result of failure of a single gyroscope.
In many applications it will be desirable to digitize information which is collected in analog form by a sensor, and making the digitized information available on the bus. For example, it may be desirable to use a pressure transducer to create an electronic signal corresponding to the ram air pressure, and providing the electronic signal to the bus. However, doing so is not critical, although digitizing such information will likely be the most cost-efficient approach.
Further, separate information lines are not required on the bus for every sensor output; such signals may be multiplexed if desired. Moreover, not all of the sensor information needs to be available at every location on the bus. For example, it may be desirable to separate one section of the bus carrying radio signals from another section, to prevent interference with radio operations from other devices, or

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Avionics system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Avionics system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Avionics system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3202564

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.