Avalanche photodiodes with an impact-ionization-engineered...

Active solid-state devices (e.g. – transistors – solid-state diode – Heterojunction device – Light responsive structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S187000, C257S188000, C257S185000, C257S430000, C257S431000, C257S432000, C257S429000, C438S048000, C438S050000, C438S063000, C438S065000

Reexamination Certificate

active

07045833

ABSTRACT:
An avalanche photodiode including a multiplication layer is provided. The multiplication layer may include a well region and a barrier region. The well region may include a material having a higher carrier ionization probability than a material used to form the barrier region.

REFERENCES:
patent: 4731641 (1988-03-01), Matsushima et al.
patent: 4839706 (1989-06-01), Brennan
patent: 4982255 (1991-01-01), Tomita
patent: 5187553 (1993-02-01), Makita
patent: 5204539 (1993-04-01), Tsuji et al.
patent: 5338947 (1994-08-01), Watanabe
patent: 5349599 (1994-09-01), Larkins
patent: 5369292 (1994-11-01), Yoo et al.
patent: 5432361 (1995-07-01), Taguchi
patent: 5457327 (1995-10-01), Taguchi
patent: 5539221 (1996-07-01), Tsuji et al.
patent: 5543629 (1996-08-01), Nakamura et al.
patent: 5744849 (1998-04-01), Sugawa
patent: 5847418 (1998-12-01), Nakamura et al.
patent: 6326650 (2001-12-01), Allam
International Search Report, PCT/US01/30775, mailed Jul 18, 2002.
R.J. McIntyre, “A New Look at Impact Ionization-Part I: A Theory of Gain, Noise, Breakdown Probability, and Frequency Response,”IEEE Trans. on Electron Dev., vol. 46, No. 8, pp. 1623-1631, 1999.
Yuan et al., “A New Look at Impact Ionization-Part II: Gain and Noise in Short Avalanche Photodiodes,”IEEE Trans. on Electron Dev., vol. 46, No. 8, pp. 1632-1639, 1999.
Yuan et al., “Impact Ionization Characteristics of III-V Semiconductors for a Wide Range of Multiplication Region Thicknesses,”IEEE Journal of Quantum Electronics, vol. 36, No. 2, pp. 198-204, 2000.
Wang et al., “Avalanche photodiodes with an Impact-Ionization-Engineered multiplication region,” 2000 IEEE Annual Meeting Conference Proceedings, 13thAnnual Meeting, Rio Grande, Puerto Rico, 13-1 pp. 9-10 vol. 1, XP002204728, 2000.
Campbell et al., “High-Speed, Low-Noise Avalanche Photodiodes,” Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and PH, pp. 114-116 vol. 4, XP002204729, 2000.
Arndt et al., “Comparison measurements for selection of suitable photodetectors for use in Nd:YAG LDA systems,”Exp. In Fluids, vol. 20, pp. 460-465, 1996.
Hayden et al., “Overview of laser communication technology at NASA Goddard space flight center,” inProc. SPIE, vol. 1866, pp. 45-55, 1993.
J.B. Johnson, “Thermal Agitation of Electricity in Conductors”,Phys. Rev., vol. 32, pp. 97-109, 1928.
H. Nyquist, “Thermal Agitation of Electric Charge in Conductors”,Phys. Rev., vol. 32, pp. 110-113, 1928.
Bowers et al., “High-speed Photodetectors,”Handbook of Optics, vol. 1, McGraw-Hill, New York, 1995.
Wey et al., “108 GHz GaInAs/InP p-I-n Photodiodes with Integrated Bias Tees and Matched Resistors,”IEEE Photon. Tech. Lett., vol. 5, No. 11, pp. 1310-1312, 1993.
Chou et al., “Nanoscale tera-hertz metal-semiconductor-metal photodetectors,”IEEE J. Quantum Electron., vol. 28, No. 10, pp. 2358-2368, 1992.
Emeis et al., “High-Speed GaInAs Schottky Photodetector,”Electron. Lett., vol. 21, No. 5, pp. 181-180, 1985.
S. Forrest, “Sensitivity of Avalanche Photodetector Receivers for High-Bit-Rate Long-Wavelength Optical Communication Systems,”Semiconductors and Semimetals, vol. 22, Lightwave Communications Technology, Orlando, FL, Academic, pp. 329-387, 1985.
R.J. McIntyre, “Multiplication noise in uniform avalanche diodes,”IEEE Trans. on Electron Dev., vol. 13, No. 1, pp. 164-168, 1966.
Chin et al., “ Multilayer Reflectors by Molecular Beam Epitaxy for Resonance Enhanced Absorption in Thin High-Speed Detectors,”J. Vac. Sci. and Tech., vol. 8, No. 2, pp. 339-342, 1990.
Kishino et al., “Resonant Cavity Enhanced (RCE) Photodetectors,”IEEE J. Quantum Electron., vol. 27, No. 8, pp. 2025-2034, 1991.
Corzine et al., “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,”IEEE J. Quantum Electron., vol. 25, No. 6, pp. 1513-1524, 1989.
Dentai et al., “High-quantum efficiency, long-wavelength, InP/InGaAs microcavity photodiode,”Electron. Lett., vol. 27, No. 23, pp. 2125-2127, 1991.
Barron et al., “Resonant-Cavity enhanced p-i-n photodetector with 17 GHz bandwidth-efficiency product,”Electron. Lett., vol. 30, pp. 1796-1797, 1994.
Forrest et al., “Evidence for tunneling in reverse-biased III-V photodetector diodes,”Appl. Phys. Lett., vol. 36, pp. 580-582, 1980.
Forrest et al., “In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling,”Appl. Phys. Lett., vol. 37, pp. 322-324, 1980.
Nishida et al., “InGaAsP Heterostructure Avalanche Photodiodes with High Avalanche Gain,”Appl. Phys. Lett., vol. 35, No. 3, pp. 251-252, 1979.
Tarof et al., “Planar InP/InGaAs Avalanche Photodetectors with Partial Charge Sheet in Device Periphery,”Appl. Phys. Lett., vol. 57, No. 7, pp. 670-672, 1990.
Tarof et al., “High-Frequency Performance of Separate Absorption Grading, Charge, and Multiplication InP/InGaAs Avalanche Photodiodes,”IEEE Photon. Tech. Lett., vol. 5, No. 6, pp. 672-674, 1993.
N.R. Howard, “Avalanche Multiplication in Silicon Junctions”,J. Electron. Contr., vol. 13, pp. 537-544, 1962.
Lee et al., “Ionization Rates of Holes and Electrons in Silicon”, Phys. Rev., vol. 134, pp. A761-773, 1964.
R.J. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: Theory,”IEEE Trans. on Electron Dev., vol. ED-19, pp. 703-713, 1972.
R.B. Emmons, “Avalanche-Photodiode Frequency Response,”J. Appl. Phys., vol. 38, No. 9, pp. 3705-3714, 1967.
Emmons et al., “The Frequency Response of Avalanching Photodiodes,”IEEE Trans. on Electron Dev., vol. 13, No. 3, pp. 297-305, 1966.
W.T. Read, Jr., “A Proposed High-Frequency, Negative-Resistance Diode”, Bell System Tech. J., vol. 37, pp. 401-446, 1958.
Stillman et al., “Avalanche Photodiodes,”Semiconductors and Semimetals, vol. 12, Infrared Detectors, New York, Academic, pp. 291-393, 1977.
Bulman et al., “Experimental determination of impact ionization coefficients in (100) GaAs,”IEEE Electron Dev. Lett., vol. 4, No. 6, pp. 181-185, 1983.
Bulman et al., “The Determination of Impact Ionization Coefficients in (100) Gallium Arsenide Using Avalanche Noise and Photocurrent Multiplication Measurements,”IEEE Trans. Electron Dev., vol. 32, No. 11, pp. 2454-2466, 1985.
Bulman et al., “Determination of impact ionization coefficients in InP by analysis of photomultiplication and noise measurements,”International Electron Devices Meeting 1981, pp. 288-291, 1981.
Robbins et al., “Impact ionization in AlxGa1-xAs for x=0.1-0.4,”Appl. Phys. Lett., vol. 52, No. 4, pp. 2996-2998, 1988.
Watanabe et al., “Impact ionization rates in (100) Al0.48In0.52As,”IEEE Electron Dev. Lett., vol. 11, No. 10, pp. 437-438, 1990.
Armiento et al., “Impact ionization in (100)-, (110)-, (111)-oriented InP avalanche photodiodes,”Appl. Phys. Lett., vol. 43, No. 2, pp. 198-200, 1983.
Cook et al., “ Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements,”Appl. Phys. Lett., vol. 40, No. 7, pp. 589-591, 1982.
Osaka et al., “Impact ionization coefficients of electrons and holes in (100)-oriented Ga1-xInxAsyP1-y, ”IEEE J. Quantum Electron., vol. 21, No. 9, pp. 1326-1338, 1985.
Taguchi et al., “Temperature dependence of impact ionization coefficients in InP,”J. Appl. Phys., vol. 59, No. 2, pp. 476-481, 1986.
Wu et al., “Design of Silicon Hetero-Interface Photodetectors,”IEEE J. Lightwave Technol., vol. 15, No. 8, pp. 1608-1615, 1997.
Jhee et al., “ The effect of nonuniform gain on the multiplication noise of InP/InGaAsP/InGaAs avalanche photodiodes,”IEEE J. Quantum Electron., vol. 21, No.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Avalanche photodiodes with an impact-ionization-engineered... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Avalanche photodiodes with an impact-ionization-engineered..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Avalanche photodiodes with an impact-ionization-engineered... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3617688

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.