Active solid-state devices (e.g. – transistors – solid-state diode – Heterojunction device – Light responsive structure
Reexamination Certificate
2006-05-16
2006-05-16
Flynn, Nathan J. (Department: 2826)
Active solid-state devices (e.g., transistors, solid-state diode
Heterojunction device
Light responsive structure
C257S187000, C257S188000, C257S185000, C257S430000, C257S431000, C257S432000, C257S429000, C438S048000, C438S050000, C438S063000, C438S065000
Reexamination Certificate
active
07045833
ABSTRACT:
An avalanche photodiode including a multiplication layer is provided. The multiplication layer may include a well region and a barrier region. The well region may include a material having a higher carrier ionization probability than a material used to form the barrier region.
REFERENCES:
patent: 4731641 (1988-03-01), Matsushima et al.
patent: 4839706 (1989-06-01), Brennan
patent: 4982255 (1991-01-01), Tomita
patent: 5187553 (1993-02-01), Makita
patent: 5204539 (1993-04-01), Tsuji et al.
patent: 5338947 (1994-08-01), Watanabe
patent: 5349599 (1994-09-01), Larkins
patent: 5369292 (1994-11-01), Yoo et al.
patent: 5432361 (1995-07-01), Taguchi
patent: 5457327 (1995-10-01), Taguchi
patent: 5539221 (1996-07-01), Tsuji et al.
patent: 5543629 (1996-08-01), Nakamura et al.
patent: 5744849 (1998-04-01), Sugawa
patent: 5847418 (1998-12-01), Nakamura et al.
patent: 6326650 (2001-12-01), Allam
International Search Report, PCT/US01/30775, mailed Jul 18, 2002.
R.J. McIntyre, “A New Look at Impact Ionization-Part I: A Theory of Gain, Noise, Breakdown Probability, and Frequency Response,”IEEE Trans. on Electron Dev., vol. 46, No. 8, pp. 1623-1631, 1999.
Yuan et al., “A New Look at Impact Ionization-Part II: Gain and Noise in Short Avalanche Photodiodes,”IEEE Trans. on Electron Dev., vol. 46, No. 8, pp. 1632-1639, 1999.
Yuan et al., “Impact Ionization Characteristics of III-V Semiconductors for a Wide Range of Multiplication Region Thicknesses,”IEEE Journal of Quantum Electronics, vol. 36, No. 2, pp. 198-204, 2000.
Wang et al., “Avalanche photodiodes with an Impact-Ionization-Engineered multiplication region,” 2000 IEEE Annual Meeting Conference Proceedings, 13thAnnual Meeting, Rio Grande, Puerto Rico, 13-1 pp. 9-10 vol. 1, XP002204728, 2000.
Campbell et al., “High-Speed, Low-Noise Avalanche Photodiodes,” Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and PH, pp. 114-116 vol. 4, XP002204729, 2000.
Arndt et al., “Comparison measurements for selection of suitable photodetectors for use in Nd:YAG LDA systems,”Exp. In Fluids, vol. 20, pp. 460-465, 1996.
Hayden et al., “Overview of laser communication technology at NASA Goddard space flight center,” inProc. SPIE, vol. 1866, pp. 45-55, 1993.
J.B. Johnson, “Thermal Agitation of Electricity in Conductors”,Phys. Rev., vol. 32, pp. 97-109, 1928.
H. Nyquist, “Thermal Agitation of Electric Charge in Conductors”,Phys. Rev., vol. 32, pp. 110-113, 1928.
Bowers et al., “High-speed Photodetectors,”Handbook of Optics, vol. 1, McGraw-Hill, New York, 1995.
Wey et al., “108 GHz GaInAs/InP p-I-n Photodiodes with Integrated Bias Tees and Matched Resistors,”IEEE Photon. Tech. Lett., vol. 5, No. 11, pp. 1310-1312, 1993.
Chou et al., “Nanoscale tera-hertz metal-semiconductor-metal photodetectors,”IEEE J. Quantum Electron., vol. 28, No. 10, pp. 2358-2368, 1992.
Emeis et al., “High-Speed GaInAs Schottky Photodetector,”Electron. Lett., vol. 21, No. 5, pp. 181-180, 1985.
S. Forrest, “Sensitivity of Avalanche Photodetector Receivers for High-Bit-Rate Long-Wavelength Optical Communication Systems,”Semiconductors and Semimetals, vol. 22, Lightwave Communications Technology, Orlando, FL, Academic, pp. 329-387, 1985.
R.J. McIntyre, “Multiplication noise in uniform avalanche diodes,”IEEE Trans. on Electron Dev., vol. 13, No. 1, pp. 164-168, 1966.
Chin et al., “ Multilayer Reflectors by Molecular Beam Epitaxy for Resonance Enhanced Absorption in Thin High-Speed Detectors,”J. Vac. Sci. and Tech., vol. 8, No. 2, pp. 339-342, 1990.
Kishino et al., “Resonant Cavity Enhanced (RCE) Photodetectors,”IEEE J. Quantum Electron., vol. 27, No. 8, pp. 2025-2034, 1991.
Corzine et al., “Design of Fabry-Perot surface-emitting lasers with a periodic gain structure,”IEEE J. Quantum Electron., vol. 25, No. 6, pp. 1513-1524, 1989.
Dentai et al., “High-quantum efficiency, long-wavelength, InP/InGaAs microcavity photodiode,”Electron. Lett., vol. 27, No. 23, pp. 2125-2127, 1991.
Barron et al., “Resonant-Cavity enhanced p-i-n photodetector with 17 GHz bandwidth-efficiency product,”Electron. Lett., vol. 30, pp. 1796-1797, 1994.
Forrest et al., “Evidence for tunneling in reverse-biased III-V photodetector diodes,”Appl. Phys. Lett., vol. 36, pp. 580-582, 1980.
Forrest et al., “In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling,”Appl. Phys. Lett., vol. 37, pp. 322-324, 1980.
Nishida et al., “InGaAsP Heterostructure Avalanche Photodiodes with High Avalanche Gain,”Appl. Phys. Lett., vol. 35, No. 3, pp. 251-252, 1979.
Tarof et al., “Planar InP/InGaAs Avalanche Photodetectors with Partial Charge Sheet in Device Periphery,”Appl. Phys. Lett., vol. 57, No. 7, pp. 670-672, 1990.
Tarof et al., “High-Frequency Performance of Separate Absorption Grading, Charge, and Multiplication InP/InGaAs Avalanche Photodiodes,”IEEE Photon. Tech. Lett., vol. 5, No. 6, pp. 672-674, 1993.
N.R. Howard, “Avalanche Multiplication in Silicon Junctions”,J. Electron. Contr., vol. 13, pp. 537-544, 1962.
Lee et al., “Ionization Rates of Holes and Electrons in Silicon”, Phys. Rev., vol. 134, pp. A761-773, 1964.
R.J. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: Theory,”IEEE Trans. on Electron Dev., vol. ED-19, pp. 703-713, 1972.
R.B. Emmons, “Avalanche-Photodiode Frequency Response,”J. Appl. Phys., vol. 38, No. 9, pp. 3705-3714, 1967.
Emmons et al., “The Frequency Response of Avalanching Photodiodes,”IEEE Trans. on Electron Dev., vol. 13, No. 3, pp. 297-305, 1966.
W.T. Read, Jr., “A Proposed High-Frequency, Negative-Resistance Diode”, Bell System Tech. J., vol. 37, pp. 401-446, 1958.
Stillman et al., “Avalanche Photodiodes,”Semiconductors and Semimetals, vol. 12, Infrared Detectors, New York, Academic, pp. 291-393, 1977.
Bulman et al., “Experimental determination of impact ionization coefficients in (100) GaAs,”IEEE Electron Dev. Lett., vol. 4, No. 6, pp. 181-185, 1983.
Bulman et al., “The Determination of Impact Ionization Coefficients in (100) Gallium Arsenide Using Avalanche Noise and Photocurrent Multiplication Measurements,”IEEE Trans. Electron Dev., vol. 32, No. 11, pp. 2454-2466, 1985.
Bulman et al., “Determination of impact ionization coefficients in InP by analysis of photomultiplication and noise measurements,”International Electron Devices Meeting 1981, pp. 288-291, 1981.
Robbins et al., “Impact ionization in AlxGa1-xAs for x=0.1-0.4,”Appl. Phys. Lett., vol. 52, No. 4, pp. 2996-2998, 1988.
Watanabe et al., “Impact ionization rates in (100) Al0.48In0.52As,”IEEE Electron Dev. Lett., vol. 11, No. 10, pp. 437-438, 1990.
Armiento et al., “Impact ionization in (100)-, (110)-, (111)-oriented InP avalanche photodiodes,”Appl. Phys. Lett., vol. 43, No. 2, pp. 198-200, 1983.
Cook et al., “ Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements,”Appl. Phys. Lett., vol. 40, No. 7, pp. 589-591, 1982.
Osaka et al., “Impact ionization coefficients of electrons and holes in (100)-oriented Ga1-xInxAsyP1-y, ”IEEE J. Quantum Electron., vol. 21, No. 9, pp. 1326-1338, 1985.
Taguchi et al., “Temperature dependence of impact ionization coefficients in InP,”J. Appl. Phys., vol. 59, No. 2, pp. 476-481, 1986.
Wu et al., “Design of Silicon Hetero-Interface Photodetectors,”IEEE J. Lightwave Technol., vol. 15, No. 8, pp. 1608-1615, 1997.
Jhee et al., “ The effect of nonuniform gain on the multiplication noise of InP/InGaAsP/InGaAs avalanche photodiodes,”IEEE J. Quantum Electron., vol. 21, No.
Campbell Joe C.
Yuan Ping
Board of Regents , The University of Texas System
Erdem Fazli
Flynn Nathan J.
Meyertons Eric B.
Meyertons Hood Kivlin Kowert & Goetzel P.C.
LandOfFree
Avalanche photodiodes with an impact-ionization-engineered... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Avalanche photodiodes with an impact-ionization-engineered..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Avalanche photodiodes with an impact-ionization-engineered... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3617688