Auxiliary gene and protein of methicillin resistant bacteria...

Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C536S023100

Reexamination Certificate

active

06391614

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the identification of auxiliary genes that encode proteins involved in antibiotic resistance in bacteria, and to compounds that can antagonize the activity of such proteins, thereby resensitizing resistant bacteria to antibiotics.
BACKGROUND OF THE INVENTION
Clinical-Epidemiological Background
Methicillin resistant strains of
Staphylococcus aureus
(MRSA) have become first ranking nosocomial pathogens worldwide. These bacteria are responsible for over 40% of all hospital-born staphylococcal infections in large teaching hospitals in the US. Most recently they have become prevalent in smaller hospitals (20% incidence in hospitals with 200 to 500 beds), as well as in nursing homes (Wenzel et al., 1992, Am. J. Med. 91(Supp 3B):221-7). An unusual and most unfortunate property of MRSA strains is their ability to pick up additional resistance factors which suppress the susceptibility of these strains to other, chemotherapeutically useful antibiotics. Such multiresistant strains of bacteria are now prevalent all over the world and the most “advanced” forms of these pathogens carry resistance mechanisms to all but one (vancomycin) of the usable antibacterial agents (Blumberg et al., 1991, J. Inf. Disease (63:1279-85).
A most ominous and recent development is the appearance of a vancomycin resistance mechanism in another nosocomial pathogen—
Enterococcus faecium
—which is known for its ability to transfer from one cell to another plasmid-born resistance factors, such as vancomycin resistance. The arrival of vancomycin resistance to MRSA is only a matter of time. Once this happens, an invasive bacterial pathogen without any antibacterial agent to control it will result. This event would constitute nothing short of a potential public health disaster of immense proportion (Leclercg et at., 1988, New Eng. J. Med. 319:157-61).
The preceding explains the intense interest in the public health and pharmacological community in any new method that promises a usable intervention against MRSA. A more complete explanation of the basis for antibiotic resistance follows.
Molecular Basis of Antibiotic Resistance
The central genetic element of methicillin resistance is the so called mecA gene. This gene is found on a piece of DNA of unknown, non-staphylococcal origin that the ancestral MRSA cell(s) must have acquired from a foreign source. The mecA gene encodes for a penicillin binding protein (PBP) called PBP2A (Murakami and Tomasz, 1989, J. Bacteriol. 171:874-79), which has very low affinity for the entire family of beta lactam antibiotics. In the current view, PBP2A is a kind of “surrogate” cell wall synthesizing enzyme that can take over the vital task of cell wall synthesis in staphylococci when the normal complement of PBPs (the normal catalysts of walt synthesis) can no longer function because thy have become fully inactivated by beta lactam antibiotic in the environment. The critical nature of the mecA gene and its gene product PBP2A for the antibiotic resistant phenotype was best demonstrated by transposon inactivation experiments in which the transposon Tn551 was maneuvered into the mecA gene. The result was a dramatic drop in resistance level from the minimum inhibitory concentration (MIC) value of 1600 &mgr;g/ml in the parental bacterium to the low value of about 4 &mgr;g/ml in the transposon mutant (Matthews and Tomasz, 1990, Antimicrobial Agents and Chemotherapy 34:1777-9).
This observation is consistent with the foregoing theory. The mutant bacteria with their interrupted mecA gene could no longer synthesize PBP2A; thus the surrogate enzyme needed for the survival in the antibiotic-rich environment was no longer available to catalyze wall synthesis. Consequently, the methicillin susceptibility of the Tn255 mutant dropped to a level approaching the susceptibility of staphylococci without the mecA gene. Methicillin MIC for such bacteria is usually in the vicinity of 1-2 &mgr;g/ml.
Auxiliary Genes
Additional genetic work resulted in several surprising observations. First it was found that the level of antibiotic resistance could also be dramatically lowered in transposon mutants in which the Tn551 did not interrupt the mecA gene or interfere with the expression of this gene (i.e., the production of PBP2A). Clearly, these mutants were low in resistance for some reason other than an interruption of the functioning of the mecA gene. In fact, it turned out that the great majority of Tn551 insertional mutants with reduced methicillin resistance all continued to produce normal amounts of PBP2A in spite of the fact that their resistance level could be reduced by very large factors, such as dropping from the methicillin MIC of 1600 &mgr;g/ml to a low of 3 &mgr;g/ml.
The first such mutant was isolated in 1983 by Swiss scientists at a time when the nature of methicillin resistance was hardly understood at all (Berger-Bächi, 1983, J. Bacteriol. 154:479-87). Subsequent work in several laboratories have increased the number of these genetic determinants, the common feature of which was that they had an intact mecA gene and yet they had reduced resistance levels to the beta lactam family of antibiotics. The provisional name “auxiliary genes” was proposed for this class of unusual genetic elements to imply that they appeared to perform some essential “helper” function(s) in the expression of high level beta lactam resistance (Tomasz, 1990, In
Molecular Biology of the Staphylococci
, Novick and Skurray, Eds., VHC Publishers: New York, pp. 565-583).
A second surprising observation concerned the number of auxiliary genes that have been identified. By 1993, the number of genetically distinct auxiliary mutants described in the literature had risen to four; presently, six have been identified [Berger-Bächai,
Trends in Microbiology
, 2:389-392 (1994); DeLencastre et al.,
J. Antimicrob. Chemother
. 33:7-24 (1994); Henze et al.,
J. Bacteriol
. 175: 1612-1620 (1993); Maidhof et al.,
J. Bacteriol
. 173:3507-3513 (1991)].
A third set of observations provided clues as to the biochemical nature of auxiliary functions. It was shown by a newly developed high resolution chromatography technique that many of the auxiliary mutants produced abnormal peptidoglycan in their cell walls. Studies combining High Performance Liquid Chromatography (HPLC) and mass spectrometry allowed the identification of the chemical changes that occurred in the mutants (De Jonge et al., 1991, J. Bacteriol. 173:1105-10; De Jonge et al., 1992, J. Biol. Chem. 267:11248-54; De Jonge et al., 1992, J. Biol. Chem 267:11255-9; and De Jonge et al., 1993, J. Bacteriol. 175:2779-82). The cell wall peptidoglycan of auxiliary mutants was composed of muropeptides (cell wall building blocks) either with incomplete cross-linking peptides or containing a free glutamic acid residue instead of the usual isoglutamine. Still other mutants showed different cell wall muropeptide fingerprints in which the exact nature of changes remains to be elucidated. These findings suggest that the auxiliary genes are genes involved with the biosynthesis of cell wall precursor muropeptides.
While all the numerous auxiliary mutants share the common feature of carrying an intact mecA, each one of the auxiliary genes are unique by the criteria of (i) physical location on the chromosome as determined by restriction mapping; (ii) in the several cases in which DNA sequences of the genes were determined (as in the cases of the auxiliary genes known as femA, femB and femC) (Berger-Bächi et al., 1992, Antimicrobial Agents and Chemotherapy 36:1367-73; Gustafson et al., 1993, In
Abstracts of the
93
rd General Meeting of the American Society for Microbiology
, Abstract A-97, p. 18; and De Lencastre et al., 1993, “Molecular Aspects of Methicillin resistance in
Staphylococcus aureus
”, J. Antimicrob. Chemother. 33:), the genes were shown to have unique DNA sequences; and (iii) in the cases in which the mutants had altered cell wall composition, the HPLC patterns provided additional gene-specific fingerprints characteristic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Auxiliary gene and protein of methicillin resistant bacteria... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Auxiliary gene and protein of methicillin resistant bacteria..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Auxiliary gene and protein of methicillin resistant bacteria... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2862555

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.