Autonomous navigation, guidance and control using LDRI

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Automatic route guidance vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S028000

Reexamination Certificate

active

06411871

ABSTRACT:

FIELD OF THE PRESENT INVENTION
The present invention relates to autonomous navigation, guidance and control utilizing the laser dynamic range imager (LDRI), and more particularly to an LDRI based high precision tracking, guidance and control system, which includes key technologies, including fuzzy logic based guidance and control, optical flow calculation (including cross-correlation, phase-correlation, and image differential), software design and implementation, and verification methods. The present invention is made with Government support under Contract NAS3-00088 awarded by the National Aeronautics and Space Administration (NASA). The Government has certain rights in this invention.
BACKGROUND OF THE PRESENT INVENTION
One application of LDRI-based autonomous navigation, guidance and control is the highly accurate automated docking. Current docking technologies, although very precise, are still not completely reliable. Current technologies include: Video Guidance Sensors, and Space Vision Systems, which provide automated docking software to the Space Program, but they are limited by the use of unique targets which are highly dependent on illumination and orientation. This guidance software requires two cameras to provide a 3-dimensional time history of the relative motion of the Docking Module and the Shuttle.
The autonomous navigation, guidance and control system consists of a motion control loop and an attitude control loop. The motion controller performs the trajectory control, i.e., the relative position tuning between the vehicles, according to the guidance law and the trajectory error. A robust Kalman filter is used to estimate the state variables, as required for relative attitude calculation.
An LDRI (laser dynamic range imager) tracker is implemented to provide the accurate position of special pattern points, which are used to determine the relative attitude, It also tracks the selected pattern of points on the vehicle without loss of the point tracking in the LDRI image pattern. The LDRI technology is a known art as suggested in the following references:
1) Lin, C.F., Modern navigation, guidance, and control processing. Englewood Cliffs, N.J., Prentice-Hall, 1990.
2) Lin, C.F., Advanced control system design. Englewood Cliffs, N.J., Prentice-Hall, 1993.
3) Huntsberger, T. L. and S. N. Jayaramamurthy, Determination of the optic flow field using the spatiotemporal deformation of region properties, Pattern Recognition Letters, 6 (1987), pp. 169-177
4) Huntsberger, T. L. and S. N. Jayaramamurthy, Determination of the optic flow field in the presence of occlusion, Pattern Recognition Letters, 8 (1987), pp. 325-333
5) George Studor, “Laser Dynamic Range Imager Space Shuttle Flight Demonstration,” NASA JSC, Houston, Tex. 77058, Structural Mechanics Report (1998)
6) Sharon S. Welch, “Effects of Window Size and Shape on Accuracy of Subpixel Centroid Estimation of Target Images,” NASA Langley Research Center, Hampton VA, NASA technical Paper 3331 (1993).
7) William K. Pratt, “Digital Image Processing,” 2
nd
Edition, A. Willey-Intersience Publication, John Willey & Sons, Inc., 651-659 (1991)
8) Muguira, M. R., J. T. Sackos, and B. D. Bradley, Scannerless Range Imager with Square Wave, Sandia National Laboratories, Albuquerque, NM 87185-0859, Proceedings SPIE Symposium in Applied Laser Radar Technology II, vol. 2472, pp. 107-113, 1995.
9) Wolf, P. R., Elements of Photogrammetry, McGraw-Hill, New York, 2
nd
Ed., 1983.
10) Pappa, R. S., M. G. Gilbert, and S. S. Welch, Simulation of the Photogrammetric Appendage Structural Dynamics Experiment, Proceedings of the 14
th
IMAC, Dearbon, Mich., pp.873-879, 1996.
11) Schmitt, R. L., R. J. Williams, and J. D. Matthews, High frequency scannerless imaging laser radar for industrial inspection and measurement applications, Sandia Report, SAND96-2739 UC-906, 1996.
12) Pecina, J. N., M. Snyder, C. Sapp, K. Crosby, V. Elliott, P. Saganti, G. Byrne, and M. Gaunce, Dynamic of the Solar Array Motion: An Image Analysis Approach, Proceedings of the 1998 SEM Spring Conference on Experimental and Applied Mechanics, Houston, Tex., June 1-3, 1998.
13) George James III, David Zimmerman, Mike Grygier, George Studor, Jose N. Pecina, and Robert Nellums, Development of Non-Contact Sensors and Data Analysis Tools for ISS Structural Dynamics, AIAA 1999 Annual technical Symposium: Developing Space Operations, Technology, & Utilization, Houston, Tex., May 27-31, 1999.
14) Tian, Q. and M. M. Huhns, Algorithms for Subpixel Registration, Computer Graphics and Image Processing, vol. 35, pp.220-233, 1986.
15) Russ, J. C., The Image Processing Handbook, CRC Press, 1992
16) Overington, I. And P. Greenway, Practical first-difference edge detection with subpixel accuracy, Image and Vision Computing, vol. 5(3), pp. 217-224, 1987
17) Garcia, P., J. Anthes, J. T. Pierce, and et al. Characterization of a scannerless LADAR system, Proceedings of SPIE in Applied Laser Radar Technology, vol. 1936, pp. 23-30, 1993
18) Vassar, R. H. and R. B. Sherwood, Formationkeeping for a pair of satellites in a circular orbit, Journal of Guidance, Control, and Dynamics, Vol.8(2), 1985, pp. 235-242
19) Seifert, H. S. (ed), Space Technology, John Wiley & Sons, New Yew, 1959, pp. 26.28-26.32
20) Clohessey, W. H. and R. S. Wiltshire, Terminal guidance system for satellite rendezvous, Journal of the Aerospace Sciences, vol.27(9), 1960, pp.653-658,674
21) Kapila, V., A. G. Sparks, J. M. Buffington, and Q. Yan, Spacecraft formation flying: dynamics and control, Proceedings of the 1999 American Control Conference, San Diego, Calif., June 1999, pp. 4137-4141
22) Xing, G. Q., S. A. Parvez, and D. Folta, Implementation of autonomous GPS guidance and control for the spacecraft formation flying, Proceedings of the 1999 American Control Conference, San Diego, Calif., June 1999, pp. 4163-4167
23) Beard, R. W. and F. Y. Hadaegh, Finite thrust control for satellite formation flying with state constraints, Proceedings of the 1999 American Control Conference, San Diego, Calif., June 1999, pp. 4383-4387
24) Lawton, J., R. W. Beard, and F. Y. Hadaegh, An adaptive control approach to satellite formation flying with relative distance constraints, Proceedings of the 1999 American Control Conference, San Diego, Calif., Jun. 1999, pp. 1545-1549
25) Guinn, J. R., Precise relative motions of formation flying space vehicles, Proc. of the 1998 AIAA Guidance, Navigation, and Control conference, AIAA-98-4187, pp. 34-39
26) Manikonda, V., P. O. Arambel, M. Gopinathan, R. K. Mehra, and F. Y. Hadaegh, A model predictive control-based approach for spacecraft formation-keeping and attitude control, Proceedings of the 1999 American Control Conference, San Diego, Calif., June 1999, pp.4258-4262
27) Goldberg, D. E., Genetic Algorithm in Search, Optimization, and Machine Learning, Addison Wesley Publishing Company, 1989
28) KrishnaKumar, K., Genetic algorithms: an introduction and an overview of their capabilities, Proc. of 1992 AIAA Guidance, Navigation, and Control Conference, pp. 728-738
29) Press, W. H., S. A.Taukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in C - The Art of Scientific Computing, Cambridge University Press, 2
nd
Edition, 1992
During the approaching process, the accuracy of the relative position and attitude plays a key role that determines the docking success. At this stage, the LDRI tracker is used to obtain the accurate relative position and attitude. The docking activation distance is determined by the LDRI tracker and its sensitivity.
SUMMARY OF THE PRESENT INVENTION
It is an objective of the present invention to provide a method for autonomous navigation, guidance, and control for docking.
It is another objective of the present invention to provide a method for autonomous navigation, guidance, and control for formation flying.
It is a further objective of the present invention to provide a method for autonomous navigation, guidance, and control for docking by using a Laser Dynamic Range Imager (LDRI).
It is a further objective of the present invention to provide a method for autonom

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Autonomous navigation, guidance and control using LDRI does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Autonomous navigation, guidance and control using LDRI, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Autonomous navigation, guidance and control using LDRI will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2947603

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.