Autonomous mission profile planning

Aeronautics and astronautics – Missile stabilization or trajectory control – Automatic guidance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C244S003100, C244S003110, C342S062000, C342S195000, C089S001110

Reexamination Certificate

active

06672534

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains to mission profiles for weapons and reconnaissance systems, and, more particularly, to a method and apparatus for autonomous mission profile planning.
2. Description of the Related Art
The power and sophistication of modern weapons and reconnaissance systems have increased tremendously in recent years. One attribute of these systems manifesting this increase is mobility. Modern systems move much faster and much further than ever before. While battlefield conditions have never been static, the rate at which battlefield conditions change has correspondingly increased dramatically.
This fluidity in battlefield conditions emphasizes the need for flexibility in the deployment of weapons and reconnaissance systems. Weapons systems, reconnaissance systems, and other agents of military force are traditionally deployed according to a “mission profile.” Mission planners gather intelligence about expected battlefield conditions pertaining to a particular military objective and then develop a mission profile by which the military objective may be accomplished. The mission profile is typically based upon numerous assumptions including, but not limited to, the expected performance of the deployed weapons system, the environmental conditions in which the deployment occurs, the expected performance of opposing weapons systems, and expected tactical responses of the enemy.
The fluidity in battlefield conditions, however, sometimes obsoletes one or more assumptions on which the mission profile is developed. For instance, the weapons system may not perform as expected; the weather may be worse than expected; an opposing weapons system may be deployed much more effectively than expected, or the enemy might do something unexpected. The theory of military tactics and strategy actually holds, in fact, that one can actually expect one or more developments of this kind to be encountered in any operation. The classic theorist Karl von Clausewitz referred to this as “the fog of war,” i.e., the uncertainty arising from unexpected developments that will undoubtedly occur.
Some assumptions are more tenuous than others, and mission profiles typically contemplate alternative formulations predicated on the most probable contingencies beforehand. However, sometimes the changed conditions are so unexpected, are so critical, or are of such a degree that the mission profile as a whole becomes untenable. In such circumstances, the mission typically is either aborted or otherwise fails in its military objective.
Consider, for example, the pursuit of SCUD missile launchers by forces under United Nations (“UN”) control (“UN forces”) during the conflict against Iraq sometimes referred to as the “Persian Gulf War.” UN forces would detect a SCUD missile launch as it occurred or shortly thereafter, and would dispatch military aircraft to destroy the launchers. UN forces enjoyed reconnaissance capabilities superior to any ever previously deployed, absolute air superiority, and the highest performance aircraft ever known. Still, UN forces never destroyed, or even damaged, a single SCUD missile launcher.
The launchers were very mobile, and Iraqi forces would begin moving them immediately upon launching their missiles. By the time UN aircraft reached the area in which they expected to find the launchers, the Iraqis had secreted them away so they could not be found. UN mission planners simply were unable to develop a mission profile capable of overcoming the capabilities of the Iraqi weapons system. The essential assumption on which the mission was planned, i.e., that the UN aircraft could arrive before the Iraqis hid the launchers, was untenable.
Consequently, as battlefield conditions become more fluid, greater emphasis is placed on flexibility in weapons and reconnaissance system deployments. A more flexible deployment permits the mission planners to contemplate a wider range of possible contingencies. All other things being equal, the more contingencies that can be accounted for beforehand the more likely the mission can be successfully completed.
The recent emphasis on “standoff” weapons and reconnaissance drones has exacerbated these considerations. Standoff weapons are weapons deployed against a target from a distance at which military personnel are relatively safe from retaliatory action. A classic example of a standoff weapon is a cruise missile, which can be launched at a target from several hundred miles away with great accuracy. Because of the distance, the personnel launching the cruise missile typically worry little about retaliation from even an otherwise dangerous target. Similarly, a reconnaissance drone may be programmed with a mission profile and launched. The reconnaissance drone then executes the mission and returns or signals information back to a central location. Either way, personnel remain behind in relative safety.
Unfortunately, standoff weapons and reconnaissance systems are not very “smart” and consequently not very flexible. Consider the cruise missile, for example. A cruise missile is programmed with a target's location and then launched. While the cruise missile can arrive at the programmed location with great accuracy, it will miss the target if the target has moved from that location. The mission planner has few options because the weapons system is not very flexible. A change in battlefield conditions (i.e., changed target location) cannot be contemplated in the mission profile because the weapons system does not have the capability. At the same time, the distance over which the cruise missile has to travel increases the probability because of the time it takes to fly the distance.
Mission profile planning is performed manually. An “analyst” sits down with some target information about a target. The target information may include the target's location and, if the target is mobile, information such as the target speed, target heading, target location error (“TLE”), and age of the information. If target information other than the target location is missing, values may be assumed. Planning the mission profile is relative if the target is stationary. However, if the target is mobile, the analyst must develop a profile under which the weapon system or reconnaissance can locate the target. This includes developing a search pattern that thoroughly covers the area in which the target may be (defined by the TLE) in an efficient manner. This can be a relatively time consuming process.
Thus, another significant problem encountered for some weapons systems and, less frequently, some reconnaissance systems is the stress of battlefield conditions. Consider a standoff weapon launched from an aircraft; for example, an air to ground missile. Although the pilot might not need to worry about retaliation from the target, the launch might occur in enemy territory over which the pilot may be subject to hostile anti-aircraft fire. The pilot may receive information about a target that may have some error in it or will have some error by the time the weapon is dispensed. A pilot under fire has neither the time nor the inclination to calculate, i.e., promulgate a new or more accurate mission profile before launching the weapon.
The present invention is directed to resolving, or at least reducing, one or all of the problems mentioned above.
SUMMARY OF THE INVENTION
The present invention, in its various aspects and embodiments, includes a method for planning a mission profile in real time. The method comprises ascertaining a plurality of target information (including a target location, a target velocity, and a target location error) and autonomously determining a pattern from the ascertained target information. In one particular embodiment, the autonomous determination includes projecting along a target axis a distance of the target location error to establish two intersections of the target axis with the target location error; projecting perpendicularly left and right from the intersections to determine a pair of possible

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Autonomous mission profile planning does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Autonomous mission profile planning, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Autonomous mission profile planning will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3266962

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.