Autonomous marine vehicle

Ships – Miscellaneous

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C043S004500, C043S008000, C114S091000, C114S14400A, C114S343000, C114S250000, C210S242300, C405S063000

Reexamination Certificate

active

06269763

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to unmanned marine vehicles. In particular, the present invention relates to autonomous marine vehicles capable of marine towing, utilitarian, emergency, and military applications typically requiring time sensitive responses.
BACKGROUND OF THE INVENTION
Numerous marine towing, utilitarian, emergency, and military applications are of a time sensitive nature and require a rapid response. Often such marine events, such as rescue attempts following a ship wreck, occur in dangerous conditions such as storms, complicating response efforts. Problems with response efforts are further compounded by existing towing and salvage methods which employ the use of humans to effect implementation of a response. Therefore, in severe maritime disasters, current methodology is often insufficient because the human responder cannot be jeopardized by being placed in potentially lethal conditions which could result in the loss of life. For example, a human responder may be put in danger due to rough seas, high winds, fire, toxic fumes, poor visibility, or hostile weapons fire in military type towing and salvage operations.
Current response equipment is often insufficient to meet the critical time requirements to effectively deal with such emergencies. Often distance from the response equipment, weather conditions, or other dangerous conditions hinder, and sometimes prevent, response efforts. For example, while conventional toxic spill response systems have been developed, the systems primarily involve the direct presence of humans to manipulate the necessary equipment. Also, such systems are generally restricted to liquid petroleum hydrocarbons (e.g., oil) only and do not address several other toxins (e.g., sulfuric acid) or the physical conditions (e.g., liquid, solid, gelatinous) in which they may occur.
Furthermore, conventional emergency response systems are not currently designed to be air deployed, are not autonomous, or remote-controlled, and are not fire and heat resistant. They are often incapable of working in rough sea states, are unable to robotically refuel, do not possess remediation spraying capabilities, are unable to ignite an oil spill and initiate a prolonged burn from within an oil spill without the use of a helicopter. Further, existing systems cannot tow oil boom autonomously, and do not possess an integrated operating software protocol which recognizes and works in conjunction with other autonomous vehicles and ships around it, and are unable to provide real-time mobile Geographical Information System (GIS) toxin mapping and response data.
Many maritime disaster situations involve ship based oil transport, oil rigs, oil terminal and oil storage facilities. Other maritime disaster events involve chemical spills, resulting in toxic chemicals being introduced into the maritime environment. Accidents involving toxic chemicals or hydrocarbon petrochemicals (e.g., oil) pose a serious threat to human, animal, and plant life, and cause substantial economic, social, and environmental damage. As a result of these chemical, hydrocarbon, or biological toxins emulsifying within an aqueous environment, their state is highly dynamic and volatile due to changing weather conditions, the rate of spillage, or risk of uncontrolled ignition, chemical reaction, and airborne contamination. Due to these and other factors, the available window of timing to initiate an effective response to a marine based spill is limited and critical where health threats, environmental and economic damage, and cleanup costs are concerned.
A crucial element in a toxic spill response is to rapidly contain the spilled substance (oil, acid, etc.) prior to its emulsification with, or subsequent spreading on, the surface of an aqueous environment. Hence a critical element of any liquid or solid toxic spill response system is an apparatus and effective methodology for rapidly containing the spilled substances. For example, to date, no one has been able to initiate a “tier one” response (the deployment of 100,000 feet of containment boom within 12 hours) to the 200 mile economic limit as defined by the U.S. Coast Guard.
A secondary element in a toxic spill response is to rapidly remediate or mitigate the spilled substance after containment has been initiated. Hence a critical element of any toxic spill response system is an apparatus and effective methodology for rapidly burning, coagulating, dispersing, and chemically or biologically remediating the spilled substances. No system currently exists which is able to address all of these remediation applications within one technology.
A third element in a toxic spill response is to effectively recover (skim) spilled raw or partially remediated substances from the marine environment in day or night conditions, in rough sea states, and to subsequently separate the recovered toxic substances from water or other fluids. Hence, a critical element of any liquid or solid, toxic spill response system is an apparatus and effective methodology for recovering the spilled substances from an aqueous environment in a liquid, solid, or gelatinous form and to separate said substances from water or other fluids.
In the fishing industry, fish are frequently spotted by aircraft which, in the process of transmitting the location of a school of fish also disclose this information to competitors. In many instances existing fishing practices are environmentally controversial (drift net fishing) and do not allow for selective removal of certain species without killing several others in the process of extracting those which are commercially desirable. In other situations fishermen must work away from their mother ships in very hazardous seas in small boats to close a purse seine or other fishing net. This approach can frequently result in death due to drowning and is the primary reason why Alaska's fishery is the most dangerous in North America losing some 35 people in more than a dozen accidents in one year (1993) alone. While many fishing systems have been developed, existing systems are often labor intensive, pose a serious risk to human life in rough seas, and are not air deployable.
Maritime fire fighting is particularly hazardous due to the volatile nature of most petroleum-based shipborne fires. These situations frequently generate temperatures far too hot for humans, and may involve explosive industrial materials, or munitions in the case of military vessels. Several lessons were learned during the Falkland Islands war where serious risk and loss of human life were experienced by the British Navy when various ships including the Galahad, Antelope, and Sheffield were hit. Under the combat circumstances experienced, it was very dangerous to engage in fire fighting or towing activities due to exploding ordinance. In dock-based fires, working underneath a burning structure to put the fire out from below is extremely dangerous due to collapsing debris. Yet this potentially lethal task is frequently undertaken by firefighters using scuba diving gear.
Commercial vessels can also become the targets of war as was the case with dozens of tankers which came under various forms of “microviolent” politically motivated attacks involving rockets, missiles, and mines during the nine year conflict between Iran and Iraq. Neutral casualties also included the U.S. military ship “USS Stark” which was mistaken for an Iranian vessel, and took a cruise missile hit (1987) which killed 27 crew and severely disabled the ship. In several instances during this war, towing companies could not respond to requests for assistance as they themselves would be attacked. Between 1975 and 1995 the office of U.S. Naval Intelligence reported 302 incidents of political/military maritime microviolence which resulted in 784 deaths. Hence, fire fighting, and towing of stricken vessels under these circumstances is extremely dangerous due to human imposed threats. Further dangers involve toxic fumes, poor visibility, and explosive fuels as was the case with the tanker “Sansinena” in Los Ange

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Autonomous marine vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Autonomous marine vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Autonomous marine vehicle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2533433

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.