Communications: electrical – Vehicle position indication – At remote location
Reexamination Certificate
1999-10-13
2001-02-06
Wu, Daniel J. (Department: 2736)
Communications: electrical
Vehicle position indication
At remote location
C340S988000, C340S989000, C340S992000
Reexamination Certificate
active
06184802
ABSTRACT:
BACKGROUND
1. Field of Invention
This invention relates to communication and transportation systems, specifically to a system for informing the users of surface transportation facilities when the next vehicle will arrive at their boarding site.
2. Discussion of Prior Art
This invention is designed to help people use surface transportation facilities, particularly those that offer only infrequent service and that are unable, for reasons inherent to the nature of the system, to adhere closely to fixed time schedules. Facilities with these deficiencies can be a burden to use for anyone who must rely on them as their sole or primary means of transportation.
A prime example is the school bus transportation system. In most locations it provides only one pickup in the morning and only one dropoff in the afternoon. With only one opportunity for a ride available, the student must make special efforts to avoid missing the bus. These efforts are exacerbated when the bus deviates significantly from its nominal time schedule. In the case of school busses, large fluctuations in the arrival time are not uncommon due in part to the special situations with which the drivers must contend. These include delays loading students, especially young ones; waiting for students that are late arriving at the stop; stops to deal with discipline or emergency problems on the bus; mechanical malfunctions; etc. Add to these the normal delays to be expected from traffic congestion, train crossings, weather, etc. and it is not surprising that variations of one-half hour in the arrival time of the bus at any given loading point are not uncommon.
Dealing with these two shortcomings, namely the single pickup and the fluctuating schedule, poses a difficult problem because attempts to minimize the adverse effects of the one shortcoming maximize the penalty imposed by the other. For example, if the student attempts to minimize the risk of missing the bus by arriving at the loading site at the earliest time that the bus is likely to arrive, over the long run he or she maximizes not only the idle waiting time, but also the exposure to harsh weather and exposure to potentially dangerous motor vehicle traffic at the bus stop. This problem plagues the user of any transportation system that provides infrequent service on an erratic schedule.
According to School Transportation News (1997, www.stnonline.com), school transportation provides approximately 10 billion student rides annually, making it the largest public transportation system in the United States. In view of this, it is surprising that there is no prior art addressing the problems just cited.
Within the last few years several patents have been issued for systems that advise transit users of vehicle arrival times. These include Schmier et al. (U.S. Pat. No. 6,006,159), Burgener (U.S. Pat. No. 5,736,940), and Lewiner et al (U.S. Pat. No. 5,493,295). However, none of these is well suited for application to the school bus transportation system because each requires that the locations of all stops be predetermined and that each stop have a name or identifying number. School bus stops are generally not prespecified and they do not have names or numbers. A stop can be any point where a driveway meets a highway and new stops can be created and old ones abandoned from one day to the next as the need changes. The system disclosed herein allows the user to designate a stop simply by pressing a button on a user device at any time that the transport vehicle is actually stopped at the desired location. The arrival time displayed by the user device is the arrival time for that site until the button is pressed to designate a different boarding location. Another deficiency of the prior art inventions cited above is that each requires an elaborate data base of route information, stop locations and names, travel times between stops, and the like. Collecting all this information and keeping it updated in the system would require a full-time staff. The system disclosed here requires no information that the system cannot gather itself and thus it is capable of operating without human intervention. This feature makes it much more economical to deploy and maintain than any system now available.
OBJECTS AND ADVANTAGES
It is a primary objective of this invention to provide users of surface transportation systems with a novel means of determining with an accuracy of the order of one minute the actual time that the transport vehicle will arrive at their boarding site on any chosen occasion. Additional objectives are
(1) that the arrival time estimations are made completely autonomously, that is, without the need of any human intervention;
(2) that the device that provides the arrival time estimation does not require any special skills or extensive training to operate;
(3) that the cost of using the arrival time estimator is within the reach of a vast majority of people who use public transportation.
This invention offers a number of advantages. First, the users of the transportation facility benefit because by knowing when a vehicle will actually arrive, the user can minimize the time that he or she spends waiting at the boarding site. This in turn minimizes wasted time, exposure to harsh weather, safety hazards posed by vehicular traffic at the boarding site, vulnerability to crime, etc. Secondly, the transportation facility itself benefits because this invention makes the service less cumbersome to use and hence it can increase patronage. The transportation facility would benefit further if this invention were available to all its users, because in that case the facility could maximize its efficiency by operating on a flexible rather than a rigid schedule. Under the latter, transport vehicles often have mandatory stops at intermediate points along their routes to prevent them from running ahead of schedule when travel conditions are more favorable than normal. This invention would preclude the need for fixed schedules allowing each transport vehicle to move as quickly along its route as conditions permitted.
While the main objective of the present invention is to assist people in their use of transportation facilities, other services could be provided as well. For example, it could be used to estimate the arrival time of mail or parcel delivery vehicles. This service would be particularly useful in rural areas where mail is generally not delivered to the house and where delivery times can vary by more than an hour from one day to the next.
Another feasible application of this invention would be within community emergency warning broadcast networks. Currently, severe weather warnings of tornados and severe thunderstorms are broadcast over areas much larger than the area that is actually at risk. As a result, for most of the recipients of the broadcast the warning is a false alarm. Over time this erodes the credibility and hence the usefulness of the warning service. However, the present invention provides a remedy to this situation because in the process of estimating vehicle arrival time it determines the geographical coordinates of a site, which would generally be a point near the user's home or office. Having this information and having the warning network broadcast an explicit, quantitative definition of the area at risk, this invention could provide a means of delivering warnings only to those people who are actually in danger.
SUMMARY
This invention describes a system, referred to hereinafter as the autonomous estimator, that informs users of surface transportation facilities of the time that a transport vehicle will actually arrive at their specific boarding site. The autonomous estimator requires that each vehicle carry a “vehicle unit” and that each user have access to a “user unit”.
Each vehicle unit is comprised of a means for determining time and spatial location, such as a Global Positioning Satellite (GPS) unit; a microprocessor device; and a radio transmitter. Each user unit is comprised of a radio receiver, a microprocessor device, and a display.
As the vehicle moves
Tang Son
Wu Daniel J.
LandOfFree
Autonomous estimator of vehicle arrival time does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Autonomous estimator of vehicle arrival time, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Autonomous estimator of vehicle arrival time will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2605271