Coating implements with material supply – Material flows through porous tool – With flow-regulator
Reexamination Certificate
2003-05-14
2004-11-16
Nguyen, Tuan (Department: 3751)
Coating implements with material supply
Material flows through porous tool
With flow-regulator
C401S006000, C401S204000, C401S263000
Reexamination Certificate
active
06817801
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an applicator device for conveniently and effectively applying cleaning and other treatment fluids to a variety of surfaces, such as a dashboard or the many other upholstery surfaces found in the interior of an automobile.
2. Description of Related Art
Automobile and other vehicle owners often use various cleaning, polishing and other appearance maintenance substances to enhance and preserve the internal appearance of their vehicles. These substances may be found in a multiplicity of chemical compositions assuming several forms, and will generally be sprayed or squeezed from their container directly onto the surface to be treated or onto a simple applicator device such as a rag or sponge. Such devices, however, have their disadvantages. For instance, a used rag soaked with treatment liquid must be either discarded or laundered after use. Laundering may prove to be time consuming and expensive, and discarding the rag and purchasing a new one for each use can be inconvenient, cost prohibitive and detrimental to the environment. Also, traditional applicator devices, such as sponges or rags, are not easily or efficiently manipulated by the user, and are often not shaped to conform to and reach the many and varied contours and crevices in an automobile interior.
Cleaning or other treatment fluids often come in contact with the user's hands, causing them to be dirtied or otherwise harmed by such contact. A sponge, when gripped, may also become distorted in the middle to curve upwardly at the sides as the user squeezes it or attempts to apply controlled and focused pressure to a certain spot, resulting in an uneven and distorted contact surface that negates the smooth flow and even application of substance being applied. Furthermore, with traditional sponges or rag applicators, the user must periodically apply cleaning or treatment fluid to the applicator.
Many devices have been developed for applying polishing, waxing, cleaning or other treatment compounds to a surface. However, without a handle or other design measures to assist the user in focusing and controlling the amount and magnitude of his or her treatment or cleaning efforts, traditional applicator devices have proven to be inconvenient and inefficient, especially for treatment of automobile upholstering or dash boards. What adds to the challenge of applying these fluids to the interior surfaces of a automobile is the fact that such surfaces are often formed in recesses or are configured with compound curvatures, angles and crevices of various shapes and sizes that challenge the effective and sustained access and control achievable with conventional applicators. For example, when using many traditional applicators, a user may encounter significant difficulty when attempting to apply treatment fluid to the portion of an automobile dashboard that is directly adjacent to its intersection with the rearwardly sloped windshield. Additionally, without a readily accessible resupply of such cleaning or treatment fluid, even with easily reachable surfaces, continuous re-application of fluid to the treatment surface or applicator device leads to inefficient expenditure of a user's time and energy. Therefore, an applicator device is needed that can provide for a steady, prolonged and efficient flow of treatment fluid that is well distributed across the lateral and longitudinal dimensions of the working surface, but that is also capable of reaching the totality of the surfaces found in an automobile's interior.
Several prior art devices have proposed the basic concepts of a porous applicator fixably mounted to some type of a container having a reservoir or breakable bladder to hold the fluid to be applied therein. The fluid contained within the container of these devices is absorbed into the porous applicator, and the applicator is then applied to a solid surface to distribute the fluid thereon. Because such devices often lack the requisite dispensing capabilities for controlled amounts of fluid over an extended surface area of the applicator pad, they often simply serve to distribute fluid to a central location on the pad, which may result in a concentration of fluid in its center and an insufficient amount at the forward, rear and lateral extremities thereof. Furthermore, the contact surfaces of the applicator pads of such devices are often not adapted to conform to and/or reach the wide array of surfaces found in a conventional automobile, and such devices may be unsuitable or unadaptable for application of different fluids that are designed for use with differing types of respective surface materials, such as leather, vinyl and the like. In addition, the relatively small surface area of some such applicators may make application to an automobile time consuming and laborious.
In recognition of some of the aforementioned shortcomings, a wax applicator has been proposed which includes a flat applicator plate having a central opening therein and a porous pad mounted thereunder and formed with a centrally disposed communication opening. A cylindrical handle forms a liquid wax receiving container and is formed on one end with a coupling plate. The coupling plate is formed with a central opening alignable with the openings in the applicator plate and pad. A domed valve is mounted over such outlet opening to, upon compression of the walls of the handle, release charges of liquid wax to be dispensed directly through the opening in the pad to the underlying surface to be waxed. A device of this type is marketed under the trademark Quick n′ Neat™ by Clean Shot Products Co., of Emporia, Kans. Such devices fail to provide for distribution of the dispensed liquid throughout the surface of the applicator pad thus inhibiting efforts to provide for broad, uniform application of treatment fluid, and require a certain degree of dexterity and effort to reach and properly apply treatment fluid to the less accessible interior areas of a typical automobile.
A need exists in the marketplace for an applicator device capable of sustained and controlled application of a desired treatment fluid in a uniform manner to the many and varied surfaces found in the interior of an automobile. It would also be especially beneficial if the housing that mounts the applicator's pad was designed for rapid and secure mating with a complementally designed replaceable container. The present invention fulfils this need.
SUMMARY OF THE INVENTION
Briefly and in general terms, the present invention is directed to an applicator device for spreading and applying cleaning, protecting or other treatment fluids to a wide array of variously shaped and dimensioned surfaces, such as those found in the interior of an automobile. The applicator device includes a container enclosing a reservoir having a ready supply of treatment fluid that also serves as a handle by which the user grasps the applicator device.
Joined to the container is a complementally mating applicator head comprising an applicator pad and a dispenser housing including a flow chamber and a bottom distribution plate, to which the applicator pad is affixed or otherwise attached. In one preferred embodiment, the fluid is transferred through the housing to an attachment surface of the applicator pad. The distribution plate includes a distribution surface formed with at least one distribution channel, which may also or alternatively be correspondingly formed on the applicator pad attachment surface, that then facilitates the flow of fluid to various desired portions of the applicator pad. Such distribution may also be achieved by passages or channels formed in a plate or the like sandwiched into the interface between the distribution plate and the pad. In another permutation, the flow chamber works in conjunction with a plurality of dispensing openings arrayed about the distribution plate to dispense the fluid of the container to the applicator's pad for further transfer therethrough to the pad's working
Anderson Dan
Baxter Brooke T.
Bucknam, Jr. William R.
Colburn Todd
Large Frederick
Fulwider Patton Lee & Utecht
Nguyen Tuan
The Valvoline Company, a division of Ashland, Inc.
LandOfFree
Automotive interior liquid applicator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automotive interior liquid applicator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automotive interior liquid applicator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3278417