Land vehicles: bodies and tops – Bodies – Door or window with specified vehicle feature
Reexamination Certificate
2001-10-03
2003-09-09
Redman, Jerry (Department: 3634)
Land vehicles: bodies and tops
Bodies
Door or window with specified vehicle feature
C049S349000, C049S502000
Reexamination Certificate
active
06616216
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATION
This application claims all benefits accruing under Paris Convention from the Japanese Patent Application No. 2000-310540, filed on Oct. 11, 2000.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an automotive door construction in which a glass elevating mechanism for raising/lowering a door glass is incorporated easily.
2. Description of Related Art
Conventionally, a door construction of this type has a door body, having a door bag portion c between an inner panel a and an outer panel b, constructed by joining flanges formed at the outer peripheries of the inner panel a and the outer panel b to each other as shown in FIG.
14
.
The inner panel a is formed with a plurality of openings d serving as installation holes for installing parts in the door bag portion c. The openings d are formed so as to be as small as possible to ensure the stiffness of the inner panel a, and in its turn the door body itself.
Through the opening d, for example, a glass elevating mechanism f to which a door glass e is not attached is slipped into the door bag portion c, and mount holes h formed in a guide rail g constituting the glass elevating mechanism f are made to coincide with mount holes i on the inner panel side. By installing screws j in the mount holes h and i, the glass elevating mechanism f is mounted on the inner panel a. The glass elevating mechanism f includes a glass mounting portion k disposed slidably in the guide rail g and a motor n for driving a wire m for sliding the glass mounting portion k. The rotation of the motor n is transmitted to the wire m, by which the glass mounting portion k is slid along the guide rail g so that the door glass e is raised or lowered. Since the guide rail g and the motor n are connected to each other by the wire m, the whole of the glass elevating mechanism f can be slipped into the door bag portion c through one of the openings d by bending the wire m.
On the other hand, after the glass elevating mechanism f is mounted on the inner panel a, the lower end side of the door glass e is inserted through an upper opening p in the door bag portion c, and a mount hole q formed in the lower end portion of the door glass e is made to coincide with a mount hole r in the glass mounting portion k provided slidably in the guide rail g. In this state, a screw is tightened by a screwdriver etc. inserted through a through hole s, by which the door glass e is mounted on the glass mounting portion k so that the door glass e can be raised and lowered in a window sash o installed so as to extend into the door bag portion c.
As shown in
FIG. 15
, the guide rail g is configured so that the upper and lower ends of the guide rail g are installed to the inner panel a so as to float via rail brackets u, and the glass mounting portion k can slide in the guide rail g while following a curved elevation path of the door glass e.
In the figures, reference character y denotes a sealing screen, and z denotes a door trim.
The automotive door construction configured as described above has a problem in that the openings d formed in the inner panel a cannot be made so large because large openings decrease the stiffness of the inner panel a or the door body.
Thereupon, when the glass elevating mechanism f is installed on the inside of the inner panel a, the worker causes to coincide the mount holes h and i with each other to install the screw j by one hand while inserting the other hand through the opening d to hold the glass elevating mechanism f, and in this state, he/she installs the glass elevating mechanism f on the inside of the inner panel a by using a motor tool. The insertion of the screw j into the mount hole h and the like work are blind work, and also the glass elevation mechanism f with a heavy weight must be held by one hand. Such very difficult work makes the worker become fatigued at an early stage. Also, since the guide rail g and the motor n are connected to each other by the wire m, the handling of the glass elevating mechanism f in the door bag portion c is very inconvenient. Thus, the installation work must be performed under bad conditions.
Further, since the inner panel a is formed with small openings d in consideration of the stiffness thereof, the weight of the inner panel a is heavy, which hinders the provision of a light-weight automotive door construction, and also the assembly workability is degraded because the work for installing the door glass e to the guide rail g is performed so that the worker inserts the door glass e through the upper opening p in the door bag portion c by holding the door glass e by one hand, and he/she holds the lower end of the door glass e by the other hand and installs the door glass e using a screw j etc. by inserting a screwdriver through a through hole s in a state in which the opening r in the glass mounting portion k is made to coincide with the mount hole q formed at the lower end of the door glass e, which is inevitably blind work.
The present invention has been made in view of the above situation, and accordingly an object thereof is to provide an automotive door construction in which a glass elevating mechanism can be incorporated easily without the formation of large holes in an inner panel.
SUMMARY OF THE INVENTION
To achieve the above object, the present invention provides an automotive door construction in which a mount hole for incorporating a glass elevating mechanism for raising/lowering a door glass is formed in an inner panel of a door body in which a door bag portion is formed between the inner panel and an outer panel, and a door trim is provided on the surface on the cabin side of the inner panel, wherein the door trim is divided into an upper trim and a lower trim; the glass elevating mechanism is installed on the inside surface of the lower trim so that the upper end of a guide rail projects upward from the upper edge of the lower trim; and the glass elevating mechanism is inserted from the upper end of the guide rail of the glass elevating mechanism through the mount hole in the inner panel, and is housed in the door bag portion, and then the lower trim is lowered along the inner panel, by which the glass elevating mechanism and lower trim are installed to the inner panel.
By this configuration, by forming the relatively small mount hole, which is shorter than the total length of the guide rail, in the inner panel, the modularized glass elevating mechanism can be incorporated in the door bag portion. Therefore, the stiffness of the inner panel or the door body is not decreased by the opening, and thus the inner panel need not be reinforced by a reinforcing member, so that there is no fear of the product becoming expensive and increased weight of door body. Also, since the lower trim is lowered after the glass elevating mechanism is incorporated, and the glass elevating mechanism and the lower trim are installed to the inner panel, by which the installation is completed, the installation work can be performed efficiently in a short period of time, and thus the workability can be improved significantly. Further, since the guide rail serves as a reinforcing member for reinforcing the mount hole formed in the inner panel, the stiffness of the inner panel is improved.
To achieve the above object, in the automotive door construction in accordance with the present invention, a holding member and a holding pin are provided between the inside surface on both sides of the lower trim and the inner panel so as to be engaged with each other when the lower trim is lowered.
By this configuration, when the lower trim is lowered along the inner panel, the holding member is engaged with the holding pin to position and fix the lower trim with respect to the inner panel. Therefore, the lower trim can be installed easily with high accuracy.
To achieve the above object, in the automotive door construction in accordance with the present invention, locking means is provided on the inside surface at the lower part of the lower trim so as to be engaged wit
Furuyama Junichi
Nishijima Hirotaka
Nishikawa Hiromitsu
Saito Masayuki
Foley & Lardner
Kasai Kogyo Co. Ltd.
Redman Jerry
LandOfFree
Automotive door construction does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automotive door construction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automotive door construction will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3091734