Automatic surgical device and control assembly for cutting a...

Surgery – Instruments – Corneal cutter or guide for corneal cutter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06605099

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an improvement in a medical apparatus used during the performance of eye surgery. In particular, the present invention is directed towards an improved cutting blade assembly to be used in conjunction with an automatic surgical device for cutting the cornea of a patient's eye. The present invention is further directed towards a control assembly for use with an automatic surgical device which is capable of shutting off power supplied to the device when problems are encountered during the surgical cutting of the cornea.
2. Description of the Related Art
Until about twenty years ago, refractive errors of light passing through the eye could only be treated with eyeglasses or contact lens, both of which have well known disadvantages for the user. Consequently, in the last several years, research has been directed to surgical operations to change the refractive condition of the eye, i.e., either to flatten or increase the curvature of a patient's eye depending upon his or her condition. The desired result of such surgical operations is that light rays passing through the cornea will be refracted to converge properly and directly onto the retina so as to allow a patient to clearly see close or distant images.
Automated Lamellar Keratectomy (ALK) is one surgical technique developed wherein the eye is first numbed by a drop of anesthetic, and then a suction ring is placed on the eye to carefully position the cornea (termed “centration” in the art) for being cut by a very fine microsurgical instrument known as a microkeratome. The microkeratome is generally a blade carrying device that must be manually pushed or mechanically driven in a cutting path across the suction ring simultaneous with the motorized movement of the cutting element, which movement is transverse to the direction of the cutting path. For treating myopia pursuant to ALK procedures, the microkeratome is typically used to first cut into the cornea so as to raise and separate a thin layer of the anterior cornea of between 100-200 microns in depth and about 7 millimeters in diameter. Next, the microkeratome is then used to make a second pass over the cornea to resect or remove a smaller part of the cornea, generally about 4 to 6 millimeters in diameter, which is then discarded. The anterior corneal cap which was cut away with the first pass of the microkeratome is then put back into its original position, without suturing, for healing to occur. The desired result of this procedure is that the cornea will have a new curvature because of the resected tissue, which provides a new refracting surface to correct the patient's original myopic condition. To correct hyperopia under ALK however, the microkeratome is typically used to make a single deep pass over the cornea. The cut layers are put back into their original position, without any removal of any other tissue. Because of the depth of the cut, the intraocular pressure within the eye causes a steepening of the cornea to again, provide a new refracting surface which hopefully will correct the patient's original hyperopic condition.
Another more recent advance in surgical procedures to correct refractive errors of the eye involves the introduction of laser procedures. One such procedure, known as Laser Intrastromal Keratomileusis, (LASIK), is currently considered optimal because it allows sculpting of the cornea by a laser, without damaging adjacent tissues. Moreover, with the aid of computers, the laser can be programmed by a surgeon to precisely control the amount of tissue removed, and significantly, to permit more options for the reshaping of the cornea. Under LASIK procedures, the eye is still typically positioned within a suction ring and a microkeratome is typically used to cut into the cornea so as to raise a thin layer of the cornea.
In recent years, it has been learned that regardless of whether ALK or LASIK surgery is performed, the microkeratome which cuts the cornea should not create a corneal cap nor separate the cut corneal tissues completely from the rest of the cornea. The reasons are primarily two-fold: first, the possibility exists that when the corneal cap is put back in place on the cornea, it will not be aligned properly with the remaining corneal tissues, which has several drawbacks for the patient, and second, the possibility exists that the corneal cap will become lost during the surgery, and if that occurs, the consequences for the patient are catastrophic. In great part to overcome these problems, among others, the inventor of the invention described in the present application created and developed an improved surgical device for cutting the cornea which automatically and reliably leaves a portion of the raised and separated corneal tissues connected or “hinged” to the eye, thereby forming a raised layer of corneal tissue hinged to the eye, known as a corneal flap F, illustrated in FIG.
1
.
Significantly, it has been determined that the corneal flap should have a depth of no less than 130 microns and no more than 160 microns to yield optimal results. It should be borne in mind that achieving this result during surgery requires an extremely precise instrument as one micron is a unit of length equal to one thousandth of a millimeter. Further, it is desirable, if not imperative, for the microkeratome to cut across the cornea in a manner that will very finely and smoothly cut the corneal tissues. In this regard, there is a need in the art for improvement in that when the smoothness of a cut made to the cornea by known microkeratome devices is closely examined under a microscope, the cut, corneal tissue edges are seen to be a bit irregular, if not slightly jagged. It would be ideal if a microkeratome device were able to cut across the cornea, not only so as to cut and raise the microscopicly thin layer of corneal tissue currently considered optimal, but to do so in a manner which results in a noticeably improved cut to the cornea, namely, by yielding very fine, smooth and almost undetectable cut corneal tissue edges.
In addition, there is room for known microkeratome devices to be improved with regard to the assembly required prior to performing surgery on a patient's eye, as well as with regard to the disassembly, sterilization and cleaning of the device, or parts thereof, following surgery. Specifically, microkeratome devices, and particularly, the cutting blade housed therein, which penetrates into and cuts the cornea must be in a proper sanitary and sterilized state until generally about the moment when surgery on the eye is to begin. Known microkeratome devices, however, have required that the housing for the cutting blade be manipulated so as to create access to an interior thereof and permit the placement of the cutting blade therein, which itself must typically be handled as well, after which, the housing must again be manipulated so as to close off the access means, all of which has hopefully resulted in the cutting blade being properly in place. This excessive manipulation required of known microkeratome devices is not conducive, however, to maintaining the proper sanitary and sterilized state required for surgery. Moreover, in manipulating the access means of certain known microkeratome devices, some surgeons have unintentionally caused the cutting blade to become dislodged, or worse, have even bent the cutting blade, thereby requiring the assembly process to start over again. Further, the mechanisms within known microkeratome devices for holding the cutting blade have been designed for repeated use. This factor tends to only exacerbate the problems encountered in the art in that these known blade holding mechanisms should also be removed from the microkeratome device following a surgery in order to be properly cleaned and/or sterilized for subsequent use. The assembly and disassembly of these mechanisms are not only tedious and time consuming, but are fraught with the difficulties of maintaining sterilization and ensuring proper re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automatic surgical device and control assembly for cutting a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automatic surgical device and control assembly for cutting a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic surgical device and control assembly for cutting a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3102459

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.