Computer graphics processing and selective visual display system – Computer graphics processing – Graphic manipulation
Reexamination Certificate
1999-12-31
2003-04-15
Luu, Matthew (Department: 2672)
Computer graphics processing and selective visual display system
Computer graphics processing
Graphic manipulation
C345S668000, C345S001100
Reexamination Certificate
active
06549214
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to image management systems, and more particularly to displaying an image on an image management system.
Medical scanners and medical imaging machines are an integral part of modern medical practice. These scanners and medical imaging devices utilize both electromagnetic radiation and sonic waves to produce images which are viewed by doctors for the diagnosis and care of patients. For example, ultrasound machines are useful for viewing fetuses during prenatal care in a pregnancy or blood flow patterns in arteries. Magnetic resonance imaging (MRI) machines are useful for producing images of a wide range of soft tissues.
In a large hospital, medical scanners and medical imaging devices are preferably networked with a central image database, such as a picture archival and communications system (PACS). The PACS is designed to provide a central storage for archive for medical images. Further, PACS is configured so that stored images may be retrieved. Typically, a hospital will have a single PACS that is networked with a plurality of medical scanners and medical imaging devices located throughout the hospital. Further, the PACS will be networked with a plurality of image workstations, such as a PACS workstation. Images generated by medical scanners and medical imaging devices are transferred to the PACS for storage and later retrieval and review by doctors located throughout the hospital at any of the plurality of image workstations.
The image workstations have one or more displays, each having a resolution (e.g., in dots per inch, or DPI). A multiple display system is advantageous for displaying a large amount of data all at once in order to maximize the efficiency of the radiologist or other operator. The displays present a graphical user interface to the operator which displays images retrieved images from the PACS, textual data (for example, from a radiology information system, or RIS), drop-down menus, icons, and other display elements, and which also receives operator input from a plurality of input devices (e.g., display buttons, voice recorders, etc.).
One drawback of having multiple workstations with multiple display resolutions occurs when the radiologist views an image at one workstation, then views the same or similar image at another workstation. If the first work station has a higher resolution (e.g., 168 DPI) than the second work station (e.g., 90 DPI), the image will appear smaller on the first work station than on the second. This can lead to confusion or misdiagnosis. Also, standard Microsoft Windows drop down menus, dialog boxes, and option boxes appear distorted between displays of varying resolution, further contributing to the confusion. Ideally, any indicia which is displayed on displays having various resolutions will appear the same in size and orientation.
It is a known procedure to download software to the workstation which is customized to include the resolution of the display used with the workstation. However, customized software is costly and lacks flexibility. For example, if a new display is coupled to the workstation, an entirely new software application must be loaded onto the workstation.
Therefore, there is a need for an image management system that automatically scales a display image based on the resolution of the display. Further, there is a need for a method of scaling a display of an image management system based on the resolution of the display. Such an image management system and method would not require customized software for each display. Such an image management system would also have the ability to determine its own hardware configuration and automatically make changes to the display data to conform to the hardware configuration.
SUMMARY OF THE INVENTION
According to one exemplary embodiment, an image management system has an image database configured to store a plurality of image data files and a workstation coupled to the image database. The workstation includes a memory to store configuration data, a display, and a data processing device coupled to the memory and the display. The data processing device is configured to retrieve a selected image data file from the image database, to generate a scaling factor based on the configuration data, and to generate a display signal based on the selected image data file and the scaling factor. The display is configured to receive the display signal and to generate indicia representative of the display signal.
According to another exemplary embodiment, a method of scaling a display of an image management system having a resolution includes: retrieving a selected image data file from an image database; generating a scaling factor based on the resolution; generating a display signal based on the selected image data file and the scaling factor; and providing the display signal to the display.
According to yet another exemplary embodiment, an image management system has a display with a resolution. The image management system includes a means for retrieving a selected image data file from an image database; a means for generating a scaling factor based on the resolution; a means for generating a display signal based on the selected image data file and the scaling factor; and a means for providing the display signal to a display.
According to still another exemplary embodiment, an image. management system has an imaging device configured to generate an image data file having resolution data representative of the resolution of the image data file and an image database coupled to the imaging device configured to store the image data file and the resolution data. The image management system further includes a workstation coupled to the image database the workstation having a display and a data processing device. The data processing device is coupled to the display and configured to retrieve the image data file and the resolution data from the image database, to generate a scaling factor based on the resolution data, and to generate a display signal based on the retrieved image data file and the scaling factor. The display is configured to receive the display signal and to generate indicia representative of the display signal.
REFERENCES:
patent: 4725892 (1988-02-01), Suzuki et al.
patent: 5027110 (1991-06-01), Chang et al.
patent: 5172103 (1992-12-01), Kita
patent: 6339434 (2002-01-01), West et al.
Koehn Bradley E.
Patel Alpesh
Della Penna Michael A.
Foley & Lardner
Luu Matthew
Vogel Peter J.
LandOfFree
Automatic scaling of display for image management system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automatic scaling of display for image management system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic scaling of display for image management system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3061787