Automatic temperature and humidity regulation – Distance-adjusted
Reexamination Certificate
1999-10-08
2001-02-20
Doerrler, William (Department: 3744)
Automatic temperature and humidity regulation
Distance-adjusted
C454S229000, C454S256000
Reexamination Certificate
active
06189799
ABSTRACT:
BACKGROUND AND PRIOR ART
Overhead ceiling fans have become very popular over in recent years. Problems have developed as to the operations of the fans. For example, traditional fans are often left on when occupants leave rooms with overhead ceiling fans. Thus, the fans can consume unnecessary power in unoccupied rooms. Another problem occurs when newly arriving occupants to new rooms and/or to darkened rooms have to search for hard to find wall toggle switches and/or overhanging chains to turn on the ceiling fans. Warm and/or stuffy rooms can be very uncomfortable to newly arriving occupants, who would have to wait for the rooms to cool down and circulate airflow. Further, turning on and off several fans in a home or building is often so inconvenient that fans are left on.
In prior art searches several patents were cited as of general interest in the art, but still fail to overcome the problems cited above.
U.S. Pat. No. 4,322,632 to Hart et al. describes a “remote load selector”, title, that allows for both a ceiling fan motor and a built-in light fixture to be selectively controlled from a single two-conductor hardwire cable connection.
U.S. Pat. No. 4,671,458 to Fukuda et al. describes an “air conditioning apparatus”, title, that senses temperatures via an infrared sensor to vary the air conditioner air flow pattern rather than to modify the fan motor speed of a ceiling fan.
U.S. Pat. No. 4,716,409 to Hart et al. describes an “electrical appliance control system” which manually activates a ceiling fan from a remote controlled outlet
U.S. Pat. No. 4,757,204 to Baldwin et al. describes a ceiling mounted passive infrared intrusion detector with a dome shaped lens.
U.S. Pat. No. 4,787,722 to Clayto describes a Fresnel lens capable of transmitting infra-red energy rays.
U.S. Pat. No. 4,782,213 to Teal describes a “ceiling fan electrically heating environmental air” where the devices heats the air in a room by resistance heaters located on the fan blades, which are activated by a thermostat.
U.S. Pat. No. 4,849,737 to Kirihata et al. describes a “person-number detecting system” for using infrared sensors to detect the numbers of people per room.
U.S. Pat. No. 4,990,908 to Tung describes a “remote power control for dual loads” for supplying power to a ceiling fan and light kit.
U.S. Pat. No. 5,033,113 to Wang describes an “Infrared Receiver System For A Remote Control Ceiling Fan”, title. The Wang devices describes an attachment device for positioning a infrared sensor beneath the fan for receiving an infrared signals for a remote control ceiling fan.
U.S. Pat. No. 5,124,566 to Hu describes a shutoff circuit for a light sensor controlled switch.
U.S. Pat. No. 5,187,472 to Hart et al. describes a “remote control system for combined ceiling fan and light fixture”, title using a wall mounted thermostat to send radio signals to alter fan speed and energization.
U.S. Pat. No. 5,189,393 to Hu describes a combination type sensor using both passive infared(PIR) and ultrasonic sensing, as an automatic sensor controlled switch that can detect motion in a room to turn on or off lights, for instance.
U.S. Pat. No. 5,406,173 to Hu describes an occupancy sensor that senses ambient light levels to control the dimming of lights.
U.S. Pat. No. 5,488,273 to Chang describes a “ceiling fan and light assembly control method”, title, using a sounding detector to tan on and off a ceiling fan and light kit.
U.S. Pat. No. 5,511,943 to Chang describes a “single throw switch circuit controlling a ceiling fan” that controls ceiling fan speed using a manual switch.
U.S. Pat. No. 5,559,406 to Chang describes a “ceiling fan and light assembly control circuit with remote controller single-throw switch optional controls” that uses an infrared remote sending unit to send a signal to a receiving unit.
U.S. Pat. No. 5,627,527 to Mehta describes a “thermostatically controlled remote control for a ceiling fan and light” using household wiring to send signals to alter fan speed.
U.S. Pat. No. 5,637,040 to Kim et al. describes an “infrared object detector” that uses an infrared sensor to detect the distance between persons and an air conditioner to adjust air conditioner fan speed and baffled air direction.
None of the cited patents adequately and sufficiently overcome the problems previously described above, particularly the problem of ceiling fans being inadvertently left on for long periods of time when no one is present.
SUMMARY OF THE INVENTION
The first objective of the present invention is to provide a ceiling fan control system using an infrared sensor to detect room occupants to turn the fan on and off.
The second object of this invention is to provide a ceiling fan system to sense room temperature in order to vary the speed(revolutions per minute(rpm)) of the ceiling fan.
The third object of this invention is to provide a ceiling fan system control for on and off operation and speed control which is directly attached to the ceiling fan housing.
The fourth object of this invention is to provide a ceiling fan system, particularly the problem of ceiling fans that eliminates inadvertently leaving the fans on for long periods of time when no one is present.
The fifth object of this invention is to provide a ceiling fan control system that can sense occupants across a wide 360 degree field for operating the fan.
The sixth object of this invention is to provide a ceiling fan control system that can suspend motion control during hours of darkness when occupants are sleeping.
A preferred embodiment of the invention includes a housing that mounts onto a ceiling fan itself generally in the location of where lights can be attached to the motor housing. The housing includes an infrared passive(PIR) sensor and adjustable control for turning the fan on and off based on motion of person(s) approaching and leaving a selected area beneath the fan, a time delay potentometer and adjustable control for turning the fan off after a preselected period when no motion is sensed, and temperature sensor and adjustable controls for varying speed of the fan based on preselected temperatures. A photocell on the housing senses light to allow the fan to operate when the area beneath the fan is dark. A removable cap covers the controls for high and low temperature settings and time settings for operation. The cap cover has a fresnel lens that covers the PIR sensor underneath, and a temperature sensor protrudes from a slot in the cover.
With the cap off, a Phillips head screw driver can be used to set the temperature and time settings with the cap cover off. A first temperature setting screw can turn the fan off when sensed the temperature is below a first preselected temperature. A second temperature setting screw having a second preselected temperature greater tand the first preselected temperature, can be used to turn the fan on to a first rotation speed when the sensed temperature is between the first preselected setting and a halfway point to the second preselected setting. With the temperature setting screws, the fan turns to a second rotation speed when the sensed temperature is greater than the halfway point to the second preselected setting, and the fan turns to a third rotation speed when the sensed temperature is greater than the second preselected setting. On the fan the third rotation speed of the moving blades is greater than the second rotation speed which is greater than the first speed.
For the control of ceiling fans it is advantageous to achieve different attributes for an occupancy based control. Additional benefits of the subject invention are the ability to sense occupants across a wide 360 degree field, the ability to suspend motion control during hours of darkness when occupants are sleeping, and the ability to automatically vary ceiling fan speed with the room air temperature. Ultrasonic type occupancy sensors are not appropriate since ceiling fan motion would induce false triggering of the device. Automatic controls which can dim lights in response to available daylight are not appropriate to ceiling fan control since
Johnston Kendall Ryan
Parker Danny S.
Doerrler William
Law Offices of Brian S. Steinberger
Norman Marc
Steinberger Brian S.
University of Central Florida
LandOfFree
Automatic occupancy and temperature control for ceiling fan... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automatic occupancy and temperature control for ceiling fan..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic occupancy and temperature control for ceiling fan... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2575821