Printing – Embossing or penetrating
Reexamination Certificate
2003-02-10
2004-08-24
Hirshfeld, Andrew H. (Department: 2854)
Printing
Embossing or penetrating
C101S019000, C400S124160, C083S030000, C083S533000, C083S575000, C083S577000, C029S03400A
Reexamination Certificate
active
06779441
ABSTRACT:
CLAIMING FOREIGN PRIORITY
The applicant claims and requests a foreign priority, through the Paris Convention for the Protection of Industry Property, based on a patent application filed in the Republic of Korea (South Korea) with the filing date of Nov. 4, 2002, with the application number 10-2002-0067709, by the applicant.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates, in general, to automatic metal printers which print an image on a hard material, such as a metal or plastic sheet, in accordance with data produced from a camera-photographed image processed through a computer program and, more particularly, to an automatic metal printer designed to print a photographed image on a surface of a hard material through a dot matrix printing type method wherein the surface of the hard material is dotted by a dotter.
2. Description of the Prior Art
In the prior art, a desired image is printed on a surface of a metal sheet by cutting the metal surface using a cutting tool installed on a CNC cutting machine or an end mill. However, the cutting process of printing an image on a metal surface using the cutting tool is problematic in that it consumes excessive time and generates dust and chips while printing.
In an effort to overcome the problem of the conventional metal printing process, a three-dimensional metal printer has been proposed, as disclosed in Korean Utility Model Registration No. 183,577. During a printing process using the conventional three-dimensional metal printer, a tool or a metal material is moved in three directions, that is, X-axial, Y-axial and Z-axial directions, and, a rough-cutting spindle and a fine-cutting spindle are sequentially rotated to roughly and finely cut the metal surface to produce an image on the surface within a short period of time.
However, the conventional three-dimensional metal printer uses a cutting process to print an image on a metal surface, so the metal printer generates dust and chips during the rough-cutting process and the fine-cutting process, and fails to produce a precise image on the metal surface. In addition, the three-dimensional metal printer must be provided with a belt transmission mechanism comprising belts and pulleys to transmit rotating force to the spindles, thereby undesirably having a complex construction.
Another problem of the conventional metal printers including the three-dimensional metal printer resides in that it is necessary for a user to manually load and unload metal materials on and from a printing position of a printer, thus increasing time consumption and sometimes causing safety hazards while printing.
SUMMARY OF THE INVENTION
Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and provides an automatic metal printer which prints an image on a surface of a hard material, such as a metal sheet, through a dot matrix printing type method, completely different from printing methods used in conventional metal printers.
That is, an object of the present invention is to provide an automatic metal printer which prints a photographed image on a surface of a hard material through a dot matrix printing type method wherein the surface of the hard material is dotted by a diamond-tipped dotter and a desired image is produced in accordance with density of dots in the dot matrix formed on the surface of the hard material, and which thus prints a precise image on the surface of the hard material and desirably reduces time consumption while printing.
Another object of the present invention is to provide an automatic metal printer which has a means for automatically loading and unloading hard materials on and from a printing position, thus being completely automated.
In order to accomplish the above objects, the present invention provides an automatic metal printer, comprising: a platform reciprocating forward and rearward in a lower portion of a body by a motor-operated first ball screw, with a seat depression formed at a middle portion of an upper surface of the platform to seat thereon a hard material to be printed with an image by the printer; a saddle installed at a position above the platform so as to reciprocate to the left and right in the body by a motor-operated second ball screw; and a dotter vertically installed on the saddle so as to dot an upper surface of the hard material seated on the platform to print the image on the surface of the hard material, the dotter comprising: a diamond tip vertically installed at a lower portion of a front surface of the saddle while being biased by a spring so as to reciprocate upward and downward; and a solenoid actuator vertically installed at the front surface of the saddle such that a plunger of the solenoid actuator comes into contact with an upper surface of the diamond tip and repeatedly pushes the upper surface of the diamond tip downward.
The automatic metal printer further comprises an automatic loading unit, the automatic loading unit comprising: two vertical cartridges standing upright at a rear portion of the body, and each sequentially receiving a plurality of metal materials therein; and a feeder installed at the rear portion of the body to surround lower ends of the two vertical cartridges, the feeder reciprocating to the left and right in the body by a motor-operated third ball screw so that the feeder alternately pushes metal materials stacked in the two cartridges to sequentially load the metal materials into the seat depression of the platform.
The automatic metal printer further comprises an automatic unloading unit mounted to a central portion of a front of the body such that the automatic unloading unit automatically unloads each metal material from the platform when the platform is moved forward to a predetermined position.
REFERENCES:
patent: 5682657 (1997-11-01), Hirose
patent: 5775215 (1998-07-01), Hirate
patent: 5785436 (1998-07-01), Harrison et al.
patent: 5820006 (1998-10-01), Turner
patent: 5924350 (1999-07-01), Helinski
patent: 6033138 (2000-03-01), Kerr
patent: 6478206 (2002-11-01), Shimotoyodome et al.
patent: 183577 (2002-11-01), None
Hirshfeld Andrew H.
Park John K.
Park & Sutton LLP
Williams Kevin D.
LandOfFree
Automatic metal printer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automatic metal printer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic metal printer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3288868