Data processing: artificial intelligence – Knowledge processing system – Knowledge representation and reasoning technique
Reexamination Certificate
1998-04-02
2002-06-25
Chaki, Kakali (Department: 2122)
Data processing: artificial intelligence
Knowledge processing system
Knowledge representation and reasoning technique
C706S046000, C706S049000
Reexamination Certificate
active
06411947
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a system for automatically interpreting an incoming data message and, more particularly, the invention relates to a system using combined rule based and case based reasoning in interpreting, classifying, categorizing, prioritizing and responding to electronic messages.
2. Related Art
Many businesses have recently sought to expand access to their products and services by using the Internet and other on-line information channels to reach current and potential customers. Indeed, marketing campaigns which solicit customers over on-line information channels using electronic messages are becoming increasingly popular. These marketing campaigns have become very successful and often customers also contact a business concern using electronic messages (for example, E-mail) to request, among other things, product information, account status, and access to products and services.
Businesses have experienced problems in adapting their business practices to respond to large volumes of incoming electronic messages transmitted over a variety of communications channels (e.g., the Internet, telecommunications channels, and the like). These businesses have had to develop methods for quickly, accurately and efficiently responding to the increased volume of incoming electronic messages in order to meet the demands of their customers. In the case of the banking industry, electronic commerce laws may require a bank to respond to certain types of electronic correspondence within a specified period.
The problems imposed on businesses in formulating methods to quickly respond to electronic messages will only be exacerbated as the use of on-line information channels and electronic messaging increases in the future.
Some businesses have responded to increases in incoming electronic messages by having employees work longer hours or employing more people to review and respond to the messages. These methods have the drawbacks of significantly increasing the business costs associated with hiring, training and/or compensating personnel as well as requiring an increase in capital equipment and office space.
An event driven rule based messaging system, see U.S. Pat. No. 5,555,346 to Gross et al., has been described which employs user specified “when-if-then” rules to manage incoming E-mail messages. The system provides a user with such features as a tickler (permitting the user to put off dealing with the E-mail for a specified period), an automatic forwarding feature, and an automatic replying feature. The forwarding and replying features are triggered by one or more of the form of the message, the source of the message and key words used in the body of the message. For example, when a recipient of E-mail will be out of the office, he or she may specify that any E-mail received from T. Jones should be automatically responded to with the message “I'm out of the office until June 1, see L. White if you need something immediately.”
Unfortunately, the rule based messaging system described in U.S. Pat. No. 5,555,346 has several drawbacks. For example, that system requires that the recipient of the E-mail know the identity of the sender (i.e., the sender is pre-determined by the user) and, therefore, would be non-responsive to E-mail coming from new customers. Further, because the so-called automatic response is not capable of being altered in accordance with the message content of each incoming E-mail, the response must be overly simple, overly broad or require that a further response be formulated by another individual.
Software coded systems for executing procedural rules using well known computer languages, for example, COBOL are not well suited for implementing a knowledge-based system for interpreting incoming electronic messages. Indeed, such procedural rules would require impractically large and complicated branched coding structures to respond to the unpredictable and intricate content of the incoming electronic messages.
Natural language processing products such as SRA or Logicon or augmented transition network in custom developed applications such as the Intelligent Banking System (see Sahin, K. and Sawyer, K. THE INTELLIGENT BANKING SYSTEM: NATURAL LANGUAGE PROCESSING FOR FINANCIAL COMMUNICATIONS. Innovative Applications of Artificial Intelligence, AAAI Press. 1989) are unsuited for producing a response to an incoming electronic message. Indeed, such systems have relatively limited sets of key linguistic clues which are expressible in rule form. Consequently such systems might only provide a pre-processor function to a classification or reasoning task at great expense and complexity.
A help desk application utilizing a case based reasoning system, see U.S. Pat. No. 5,581,664 to Allen et al., has been described which compares an incoming set of facts (a “Problem”) with a stored set of exemplar cases (a case base). The system then performs the same action for the problem as was performed in connection with the stored case. The case base is stored in the form of case attributes representing past “problems.” The case attributes are compared to the facts of the incoming problem using trigram character matching to obtain a set of prior cases which may be useful in formulating an appropriate action.
Unfortunately, the help desk application described in U.S. Pat. No. 5,581,664 has several drawbacks. For example, a user must interact with the system to narrow down the results of the case base search to obtain the “best” case match. Consequently, the system would not provide satisfactory results if the input to the system was an electronic message and no user interaction was provided. Further, the system is not capable of automatically responding to the sender of an electronic message. Indeed, a representative or the user must interactively interpret the set of cases retrieved from the case base to obtain a response to the “problem.”
Accordingly, there is a need in the art for a system which overcomes the shortcomings of the prior art by receiving electronic messages, classifying and categorizing the messages, and automatically responding to the messages without the intervention of a human operator.
SUMMARY OF THE INVENTION
The process of reviewing electronic messages involves complex reasoning which is distinctly knowledge specific. The present invention was developed in a banking industry context and was based on domain specific knowledge of banking products and services. It is understood that the present invention is not limited to the banking industry context and that one skilled in the art could readily adapt the teachings herein to other industries.
It is understood that a manual process for classifying and formulating responses to ambiguous and/or new electronic messages requires experience and often the collective experience of several members of a business team. Human electronic message reviewers read each message from beginning to end while continuously evolving a final interpretation by recursively applying business knowledge to the content of the message.
Therefore, the method and system of the present invention emulates the recursive nature of evolving interpretation by utilizing a knowledge base to execute reasoning tasks which automatically classify incoming electronic messages and automatically obtain responses to the messages.
In order to overcome the disadvantages of the prior art, the method of the present invention includes a method for automatically interpreting an electronic message including the steps of (a) receiving the electronic message from a source; (b) interpreting the electronic message using a rule base and case base knowledge engine; and (c) classifying the electronic message as at least one of (i) being able to be responded to automatically; and (ii) requiring assistance from a human operator.
According to another aspect, the present invention includes a method for automatically interpreting an electronic message including the steps of (a) receiving the electronic message from a source; (b)
Hsu Julie
Rice Amy
Brightware, Inc.
Chaki Kakali
Khatri Anil
Merchant & Gould P.C.
LandOfFree
Automatic message interpretation and routing system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automatic message interpretation and routing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic message interpretation and routing system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2953937