Automatic mapping, monitoring, and control of computer room...

Data processing: measuring – calibrating – or testing – Measurement system – Remote supervisory monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S215000, C345S960000, C340S870030

Reexamination Certificate

active

06188973

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the field of computer systems and computer mass storage devices and subsystems. More particularly, this invention relates to a system and method for automatically determining the physical location and operational status of components in a computer system, and mapping, monitoring, and controlling the same through a graphical user interface.
2. Description of Related Art
Computing systems employing mass storage devices conventionally have various components contained in numerous mutli-shelf cabinets in a computer room. These various components contained in the cabinets can include disk drives, controllers, power supplies, blower fans, monitoring modules, backplanes, etc., and are referred to generally as Field Replaceable Units (FRUs).
In managing the computing system, system administrators or other users often have a need for identifying a particular component present in the system, as well as the location and status of the component within the cabinets of the computing system. For instance, if a particular component is malfunctioning, it is desirable for the system administrator to have the ability to quickly and accurately determine the status of the component and locate the component within the computing system. It is also desirable to have this information available to a computer monitoring utility or graphical user interface (GUI).
In the past, components in a computing system have been identified by manually entering the components information into the system monitoring utility or GUI. The system monitoring utility or GUI is manually told what the system components are, how the components are configured into subsystem, and how the subsystems are configured into a full system. For example, the system administrator or some other person manually enters information about the cabinets (i.e., the number of shelves, shelf type, etc.) as well as the physical location of a given component within a cabinet.
This manual entry process is susceptible to human error, and can be very time consuming for large systems consisting of many components. Furthermore, when a component fails in a typical conventional system, the user or system manager or field service personnel must identify and manually search for the failed system component.
SUMMARY OF THE INVENTION
In accordance with this invention, the above problems have been solved by the present invention's system and method for a system monitoring utility or graphical user interface (GUI) to automatically determine and graphically represent the exact location of any system component within a shelf of a cabinet in the computing system. This information is extremely useful for system managers, field service personnel, and users to quickly and accurately identify components in the computing system, particularly failed components. Further, the status of the system is monitored and displayed by the GUI, and any changes in the system's physical configuration are detected. Finally, a user can issue commands to the GUI to locate a component in the system, or alter an operating setpoint of a component in the system.
In one embodiment of the invention, a method for automatically mapping on a computer display a graphical representation of the physical arrangement of a plurality of components of a computing system is disclosed. The method is comprised of initially detecting the presence of each component connected in said computing system, then determining a component attribute for each component detected. A cabinet attribute for each cabinets is also detected, the cabinet attribute containing a cabinet identification indicator and a cabinet type.
A unique address is then assigned to each component detected by the detecting step. The unique address corresponds to the physical location of each component in the cabinet. A graphical representation of the physical arrangement of the components in the cabinets is then generated on the computer display according to the unique address, the component attribute, and the cabinet attribute.
In another embodiment of the invention, the first determining step further reads a component type and a component version number for each component in the system. The second determining step further ascertains the number of shelves in each cabinets based on cabinet type information obtained from the cabinet attribute information.
In yet another embodiment of the invention, the first determining step reads a component status indicator corresponding to the operational status of each component. Additionally, any changes in the operational status of each component is monitored, and the computer display is updated with a graphical representation of the change in the operational status. The monitoring step can be implemented by periodically polling the components for a status flag of each components. The status flag has an indicator bit for each component indicating, when set, that a change in the operational status of the component has occurred. The status flag can be tested to determine if the status flag is active, and if so, the particular component referenced by the flag can be further queried for its respective status information.
Further, changes in the configuration of the system are detected by the present invention. The component attributes, such as the type of device and the version number, for each component installed in the shelves is monitored to detect any modification of the shelf's configuration, and the computer display is updated accordingly with a graphical representation of any modifications of the components installed therein.
In another embodiment of the invention, the method further comprises detecting a user command input to the computer display for controlling one of the components in the computing system. The control operations can include changing an operating setpoint of a component (i.e., a warning level for excessive temperature), or to flash an indicator light on a component so that the system administrator can more easily locate the component in the computing system.
The control functions are implemented as a method by identifying the unique address of the component sought to be controlled, forming a command message for transmission from the GUI or computer display device to the component at the unique address, and transmitting the command message to the component at the unique address.
In a system implementation of the invention, disclosed is a system for automatically mapping on a computer display a graphical representation of a physical arrangement of a plurality of computer components, the components arranged in one or more cabinets, each cabinet having one or more shelves for housing the components. The system has a monitoring device, a detecting module, attribute determining modules, an address assignment module, and a drawing module.
The monitoring device is installed in at least one shelf and is electrically connected to the components for communicating with the components. The monitoring device is adapted to communicate with a computer display. The detecting module detects the presence of each component connected in the computing system, while the component attribute determining module determines the component attributes for each of the components detected by the detecting module. The cabinet attribute determining module determines the cabinet attributes for each cabinet, these cabinet attribute include a cabinet identification indicator and a cabinet type. The address assignment module assigns a unique address to each one of the components detected by the detecting module, the unique address corresponding to the physical location of each component in the cabinet. The drawing module represents on the computer display the physical arrangement of the components in the cabinets according to their unique address, their component attribute, and the cabinet attribute.
A graphical user interface operates on the computer display device and is adapted to accept an input command from a user. The graphical

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automatic mapping, monitoring, and control of computer room... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automatic mapping, monitoring, and control of computer room..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic mapping, monitoring, and control of computer room... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597754

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.