Interactive video distribution systems – Video distribution system with upstream communication – Receiver
Reexamination Certificate
2000-05-11
2003-09-09
Lim, Krisna (Department: 2153)
Interactive video distribution systems
Video distribution system with upstream communication
Receiver
C725S002000, C725S112000, C709S245000
Reexamination Certificate
active
06618858
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to data communications and network infrastructure. More specifically, it relates to registering and identifying users of advanced set-top boxes for delivering and transmitting data in a network.
2. Discussion of Related Art
Over the past several years, there has been a proliferation of users desiring access to various types of data. This data includes data over the Internet (e.g., Web content and email) and data related to television settings, preferences, and rights. Presently, a significant portion of these users, although wanting to “get online,” are not necessarily proficient at or accustomed to using general-purpose computers, and presently many may not have the need or the resources to be proficient. As a practical matter, the vast majority of people who desire to use and benefit from the Internet must have access to a computer or some type of terminal (e.g. an Internet “kiosk”) to logon. This greatly limits the number of users who can use and contribute to the Internet.
Internet and other digital data have typically been delivered using telephone lines connected to servers and modems which feed the data to client or stand-alone computers. Recently, however, other existing and newly built networks are being used to deliver such data. Although not the only one, one of the more notable of these new delivery systems are cable television plants working in conjunction with either established or newly developed (e.g. all-fiber optic) back bone networks. Using the inherent two-way data transmission capability of existing hybrid fiber-coaxial (HFC) cable television plants, delivery of data using cable to consumers is on the rise. Data can be delivered at much faster speeds than speeds attainable using copper telephone wires. Other high-speed data delivery means include Digital Subscriber Lines (DSL) and high-speed wireless access, among others.
With cable television plants, currently, in order to receive and transmit data (e.g., Web content, email, etc.) on the cable plant, the user needs a cable modem. A cable modem can digitize an incoming analog signal (on the HFC downstream) and convert digital data to analog signals for transmission (on the HFC upstream). Generally, data is sent to and received by a cable modem termination system (CMTS) located at the headend of the cable television plant.
A cable modem can be a separate device or be a component incorporated in, for example, a cable television set-top box, such as the type many subscribers to cable television already have. A set-top box having an internal modem and other components can be referred to as an advanced set-top box or ASTB. By using an advanced set-top box, a user with access to cable television can also access other data sources, such as the Web or remote servers or networks having data of interest to the user. This assumes that the HFC plant in the user's geographical area has been upgraded for two-way digital data transmission. The cable modem device or component in the ASTB can be connected to some customer premise equipment such as a television, computer, Web pad or other Internet Protocol (IP) clients. As described earlier, many households and users may not have a personal computer for accessing the Internet or other remote sources of data. However, with an advanced set-top box having a cable modem, a user can receive and transmit data using a television and keyboard.
One of the goals of using an advanced set-top box or other IP-enabled device for accessing external digital data is to enable a broader segment of the population (i.e. those having access to cable television) to get online in a simple and efficient manner. Presently, getting online can be a complex and intimidating task for those who are not computer savvy or for those not interested in the intricacies of the Internet or of user interface issues (e.g. using a browser or using an Internet search engine). In a simple example, a user with a common name may not want an email address having several numbers or characters appended to his name just to make it unique. In another example, a user may want to easily change his logon name or keep several simple and intuitive email addresses for different purposes. In yet another example, a user may want to update a login name for an electronic wallet. Currently, each login name would have to be complex and difficult to understand to ensure it's uniqueness within the network; thus preventing the user from having a simple and easy to use identifier.
The underlying complexity and options not of interest to the user are nevertheless displayed to the user, thereby cluttering the user interface and complicating an otherwise simple process in most cases. Many user interfaces today present too many irrelevant options and too much data to a user who may have relatively simple needs or the user interface is of such a nature that it is not capable of being simplified.
Presently, a user using an advanced set-top box for Internet and television access is typically confined to using that specific set-top box. That is, the user is unable to logon to other set-top boxes. The user is also limited with respect to the number of logon identifiers he can maintain. In addition, if the user desires to login from another ASTB, he would have to repeat the login process.
Therefore, it would be desirable to allow a user to simply “plug-in” an advanced set-top box, register itself with the operator, and then set up profiles and other settings in a simple and intuitive manner. These profiles and settings can pertain to Internet and other digital data as well as television settings. It would also be desirable to allow a user to maintain several logon identifiers (chosen by the user) such as email addresses and passwords and allow the user to change logon information as desired without having to derive a unique name each time and without having to go through a lengthy process with the service provider. In addition, the underlying complexity of the network would be kept hidden from the user by allowing the user to choose a simple, meaningful logon name. It would also be desirable to unite access PINs for pay-per-view access and user identification for network services access.
SUMMARY OF THE INVENTION
According to the present invention, methods, apparatus, and computer-readable media are disclosed for enabling a user of data services over a network to automatically register for such services by plugging in a set-top box, such as an advanced set-top box, and entering certain information through a member services screen. The present invention also allows a user to have several accounts distributed over several set-top boxes and various IP clients (e.g. PDAs, Web pad, and other devices having IP connectivity) and have all accounts map to a single network identity. That is, it allows a user to have multiple viewer identities for different purposes yet have all of them map back to a single network identity for that user.
In one aspect of the present invention, a method of automatically registering a set-top box in a network includes an initial step of creating a subscriber data record and generating a registration code where the data record holds data relating to a subscriber and the registration code is given to the subscriber. IP connectivity is established between the set-top box and an operator. This connectivity can be indicated by the presentation of a data input screen, such as an operator member services screen, to the subscriber, once the set-top box is plugged in. A unique subscriber or user identifier is generated and is transmitted to and resides on the set-top box. A binding is then made between the set-top box and a corresponding network account that is under control of the operator and resides on the network-server side of the network. The binding associates the unique subscriber identifier with the network account. The unique subscriber identifier is not known to the user, is unperceptible to the user, and is immutable by t
At Home Liquidating Trust
Beyer Weaver & Thomas LLP
Lim Krisna
LandOfFree
Automatic identification of a set-top box user to a network does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Automatic identification of a set-top box user to a network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatic identification of a set-top box user to a network will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3018941